首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
三维内肋螺旋管内强化换热实验   总被引:6,自引:0,他引:6       下载免费PDF全文
采用实验方法测试了三维内肋螺旋管内的流动传热性能。实验用的螺旋管曲率δ=0.0663,测试段长1.15m,试验工质为水。对螺旋光管和两种不同结构尺寸的三维内肋管进行了测试,测量的雷诺数范围约为Re=1000~8500。结果表明,三维内肋对螺旋管内的对流换热仍然有较大的强化效果,同时流阻也有一定程度的增加。与未加肋的螺旋光管相比,在测试的流动范围内,两种三维内肋管的平均换热强化比达1.71和2.03.热力性能系数为1.2~1.66。  相似文献   

2.
在内径为80mm的大型水平实验环道上进行了广泛的空气一水两相流实验,将采集的一定时间长度的分层、段塞、环状流型的差压波动信号,显示成二维图像。通过对30组差压波动数据分析发现:段塞流的信号区和背景区面积之比平均为0.026,分层流为0,53,环状流为0.35。段基流信号区占整个图像面积的比值远小于其他流型,因此该比值可以作为判别段塞流型的一个特征参数。该方法能有效利用于段塞流流型的快速自动检测。  相似文献   

3.
通过对两相流型和干涸现象进行分析,发现CO2在吸热沸腾过程中,环状流是主要的流型,液滴夹带和沉降是支持环状流最可能的机理。与其他制冷剂相比,CO2出现环状流以及发生干涸时的干度值要低得多。并且干涸前和干涸后的传热特点,以及关联式形式存在很大差别,应该区分对待。因此,研究能淮确描述CO2流动沸腾换热关联式,为CO2跨临界制冷循环蒸发器的优化设计提供理论依据,是非常必要的。  相似文献   

4.
结合高速摄像和电容层析成像技术,对脉动热管进行了可视化测量研究.从流型和流向两方面分析了脉动热管的运行机理和传热特性.根据受力分析对脉动热管的结构进行了改进.结果表明:脉动热管存在3种不同流型,即塞状流、环状流以及两者共存的混合流,其对应的影响因素、运行特性与传热强度也不同;从流动方向来看,脉动热管内工质的流动可分为脉动流和循环流;对脉动热管的改进说明改变脉动热管流道的对称性和均衡性有利于循环流的形成和维持.  相似文献   

5.
平行流蒸发器内气液两相流分配均匀性实验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
平行流蒸发器内气液两相(特别是液相)在各扁管间的分配对其传热性能影响较大,如果各扁管间的气液分配不均匀其传热性能将显著地下降.在不同气-液流量下实验研究了6种不同形式的平行流蒸发器的分支管液体流量分配情况,实验中观察到流型以环状流为主.研究发现,对于竖直向下流动和竖直向上流动,用通过增加管径的方法不能改善液体流量在各分支管的分配,而主管中气液入口的位置对于流量分配均匀性影响较大.  相似文献   

6.
为研究平行流热管的工作机理,本文基于Fluent软件中的VOF模型编写了蒸发冷凝相变的UDF程序,对不同功率下平行流热管管内两相流动和传热过程进行了数值模拟研究。模拟结果显示了初始阶段平行流热管管内的气液分布,启动阶段管内包括泡状流、弹状流、环状流等复杂流型的转变过程,稳定工作阶段工质在各并联管路中互激振荡流动。在高加热功率下,管内工质的互激振荡流动更为剧烈,热量输送距离更远。研究结果为平行流热管换热器的优化设计提供了参考依据。  相似文献   

7.
为研究通道内的流型演变,采用单组分多相格子玻尔兹曼模型模拟波动加热下二维微通道内的流动沸腾。通过速度分析解与半经验公式分别验证模型流场和温度场的准确性。探究雷诺数(4.5≤Re≤9.0)和温度分布(0.01≤A≤0.03)对传热和流型的影响,分析薄液膜和温度梯度的作用机制,揭示微通道流动沸腾的传热机理。模拟结果表明通道内流型将从泡状流、塞状流,变成拉长气泡流、环状流。雷诺数减小时,气液相变速率加快、薄液膜厚度减小,进而增强换热。随着雷诺数减小,加热壁面上热流密度的峰值点向上游转移。马兰戈尼对流(Marangoni convection)的出现导致薄液膜厚度增加,从而换热效果随着温度分布波动性的增大而受到削弱。  相似文献   

8.
基于汽芯的动量方程和液膜的质量和动量方程,建立了单面均匀热流竖直窄通道内环状流沸腾传热模型,利用数值法对方程组进行求解,得出了环状流区域的液膜厚度,并进一步预测了环状流两相沸腾传热系数。研究表明:模型预测的两相沸腾传热系数比Mahmound关联式计算值偏小;将不同工况下的291组环状流两相沸腾传热系数实验值与模型预测值进行对比,平均绝对误差为12.7%。  相似文献   

9.
汽液两相流流型的测量在两相流研究中占有重要地位。应用均相流模型建立了圆管内汽液两相上升流压力分布,基于反问题理论反演了汽液两相的物性参数,将反演结果与流型图结合,精确地预测了管内流型,计算结果与实验结果进行了对比,误差小于5%。提出的反演流型的方法,可以推广到水平管、螺旋管,为工程上的汽液两相流设备安全性分析、稳定性分析等提供了一种简单可靠的技术方法。  相似文献   

10.
脉动热管的流型及流向分析   总被引:3,自引:0,他引:3  
通过3种不同结构脉动热管的可视化实验,研究管内工质的流型和流向.运用实验研究的方法,加宽充液率和热负荷的变化范围,观察并分析不同流型的变化特征;另外,设计出有利于实现工质稳定循环流动的两种改进型脉动热管.实验结果表明:不同工作条件下脉动热管内会出现塞状流、混合流和环状流等不同流型,流型具有自适应传热量变化的特性;改变脉动热管流道的对称性和均衡性,以及毛细渐扩管道汽泡的微泵效应,有利于实现工质的稳定单向循环流动.  相似文献   

11.
Heat transfer and pressure drop characteristics of four microfin tubes were experimentally investigated for condensation of refrigerants R134a, R22, and R410A in four different test sections. The microfin tubes examined during this study consisted of 8.92, 6.46, 5.1, and 4 mm maximum inside diameter. The effect of mass flux, vapor quality, and refrigerants on condensation was investigated in terms of the heat transfer enhancement factor and the pressure drop penalty factor. The pressure drop penalty factor and the heat transfer enhancement factor showed a similar tendency for each tube at given vapor quality and mass flux. Based on the experimental data and the heat-momentum analogy, correlations for the condensation heat transfer coefficients in an annular flow regime and the frictional pressure drops are proposed.  相似文献   

12.
水平三维内微肋管在局部蒸干区的沸腾换热及其关联式   总被引:2,自引:1,他引:2  
为了得到不同流型下的换热性能 ,以 R1 3 4a为实验工质在一种水平三维内微肋管内进行了流动沸腾换热实验研究 ,通过可视化等措施对得到的主要流型及其转换曲线表示在 G-x图上。对局部蒸干区的沸腾换热特点进行了讨论 ,并根据此区域换热的特点 ,沿周向管壁分成两个部分 ,即 :蒸干部分和非蒸干部分。对于非蒸干部分又分为淹没微肋的底部液体 ,且认为同环状流换热机理相同 ,而另一部分认为液休带领在沟槽中 ,从而得到了此区域的换热实验关联式 ,此换热关联式与实验值的最大偏差在± 1 6%以内  相似文献   

13.
The heat transfer characteristics of condensation for R410A inside horizontal microfin tubes with 0° and 18° helical angles were investigated numerically. The numerical data fit well with the experimental results and with the empirical correlations. The results indicate that local heat transfer coefficients increase with increasing mass flux, vapor quality, and helical angle. The heat transfer enhancement in the helical microfin tubes is more pronounced at higher mass flux and vapor quality. The centrifugal force induced by the microfin with a 18° helical angle tends to spread the liquid from the bottom to the top, leading to a nearly symmetrical liquid–vapor interface during condensation. Swirling flows in the liquid phase are observed in the tube with the 18° helical angle, but the liquid phase tends to flow to the bottom due to gravity in the tube with the 0° helical angle.  相似文献   

14.
Yang Du     《热科学学报(英文版)》1999,8(1):44-50
INTRODUCTIONSince1980s,thestudyofthein-tubecondensingheattransferenhancementhasbecomeimportant.Thetwodimensionalinnerfintubes,twodimensionalinnermicrofintubes(inthefollowingsimplycalled2Dtubes)andinserterswerepaidattentiontoforthein-tubecondensinghea...  相似文献   

15.
This paper presents a new type of three‐dimensional inner microfin tube. The flow patterns, the flow pattern criteria, and the heat transfer enhancement performances for horizontal condensation inside these tubes were obtained by experiment. The correlation of the local condensing heat transfer coefficient for stratified flow inside a two‐dimensional inner microfin tube was obtained on the basis of analysis and experimental data. The calculated results with the correlation are consistent with the experimental data within ±30%. © 2000 Scripta Technica, Heat Trans Asian Res, 29(8): 623–633, 2000  相似文献   

16.
A physical model of gas–liquid two-phase annular flow regime is presented for predicting the enhanced evaporation heat transfer characteristics in horizontal microfin tubes. The model is based on the equivalence of a periodical distortion of the disturbance wave in the substrate layer. Corresponding to the stratified flow model proposed previously by authors, the dimensionless quantity Fr0 = G/[gdeρv(ρl ? ρv)]0.5 may be used as a measure for determining the applicability of the present theoretical model, which was used to restrict the transition boundary between the stratified-wavy flow and the annular/intermittent flows. Comparison of the prediction of the circumferential average heat transfer coefficient with available experimental data for four tubes and three refrigerants reveals that a good agreement is obtained or the trend is better than that of the previously developed stratified flow model for Fr0 > 4.0 as long as the partial dry out of tube does not occur. Obviously, the developed annular model is applicable and reliable for evaporation in horizontal microfin tubes under the case of high heat flux and high mass flux.  相似文献   

17.
This study deals with an empirical investigation on the convective heat transfer of Cu/oil nanofluid flow inside a concentric annular tube with constant heat flux boundary condition and suggests a correlation to predict the Nusselt number. The average size of particles was 20 nm and the applied nanofluid was prepared by Electrical Explosion of Wire technique with no nanoparticle agglomeration during nanofluid preparation process and experiments. The nanofluid flowing between the tubes is heated by an electrical heating coil wrapped around it. The effects of different parameters such as the flow Reynolds number, tube diameter ratio, and nanofluid particle concentration on heat transfer coefficient are studied. Using the acquired experimental data, a correlation is developed for the estimation of the Nusselt number of nanofluid flow inside the annular tube. This correlation has been presented by using the exponential regression analysis and least‐squares method. The correlation is valid for Cu/base oil nanofluid flow with weight concentrations of 0.12, 0.36, and 0.72 in the hydrodynamically full‐developed laminar flow regime with Re <140, which is applicable in mini‐ and microchannel heat exchangers, and it is in good agreement with the experimental data.  相似文献   

18.
The pressure drop and boiling heat transfer characteristics of steam-water two-phase flow were studied in a small horizontal helically coiled tubing once-through steam generator. The generator was constructed of a 9-mm ID 1Cr18Ni9Ti stainless steel tube with 292-mm coil diameter and 30-mm pitch. Experiments were performed in a range of steam qualities up to 0.95, system pressure 0.5-3.5 MPa, mass flux 236-943 kg/m2s and heat flux 0-900 kW/m2. A new two-phase frictional pressure drop correlation was obtained from the experimental data using Chisholm’s B-coefficient method. The boiling heat transfer was found to be dependent on both of mass flux and heat flux. This implies that both the nucleation mechanism and the convection mechanism have the same importance to forced convective boiling heat transfer in a small horizontal helically coiled tube over the full range of steam qualities (pre-critical heat flux qualities of 0.1-0.9), which is different from the situations in larger helically coiled tube where the convection mechanism dominates at qualities typically >0.1. Traditional single parameter Lockhart-Martinelli type correlations failed to satisfactorily correlate present experimental data, and in this paper a new flow boiling heat transfer correlation was proposed to better correlate the experimental data.  相似文献   

19.
This study investigates the heat transfer characteristics of a horizontal tube-in-tube heat exchanger with a helical wire inserted in the inner tube. The influence of the pitch (or helix angle) of the wire on the heat transfer performance and pressure drop during condensation (having all other geometric parameters the same) was investigated experimentally. Tests were conducted for condensing refrigerants R22, R134a, and R407C at an average saturation temperature of 40°C, with mass fluxes ranging from 300–800 kg/m2s and with vapor qualities ranging from 0.85–0.95 at condenser inlet to 0.05–0.15 at condenser outlet. Measurements were made for three helical wire-inserted tubes with different pitches of 5, 7.77, and 11 mm. The local and average heat transfer coefficients were compared not only with the measured data of a smooth tube, but also with the results of micro-fin tubes. The tube with a helical wire pitch of 5 mm inserts was found to have the highest enhancement factor, which can be elucidated by the extension of the annular flow regime. Heat transfer coefficient correlations for helical wire inserts were deduced, and they predicted the experimental data to within 20%.  相似文献   

20.
An experimental investigation was performed to study the heat transfer characteristics of temperature-dependent-property engine-oil inside shell and coiled tube heat exchangers. For this purpose, a well-instrumented set-up was designed and constructed. Three heat exchangers with different coil pitches were selected as the test section for counter-flow configuration. Engine-oil was circulated inside the inner coiled tube, while coolant water flowed in the shell. All the required parameters like inlet and outlet temperatures of tube-side and shell-side fluids, flow rate of fluids, etc were measured using appropriate instruments. An empirical correlation existed in the previous literature for evaluating the shell-side Nusselt number was invoked to calculate the heat transfer coefficients of the temperature-dependent-property fluid flowing in the tube-side of the heat exchangers. Using the data of the present study, an empirical correlation was developed to predict the heat transfer coefficients of the temperature-dependent-property fluid flowing inside the shell and coiled tube heat exchangers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号