首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A mobile ad hoc network (MANET) is characterized by multi-hop wireless links and frequent node mobility. Communication between non-neighboring nodes requires a multi-hop routing protocol to establish a route. But, the route often breaks due to mobility. The source must rediscover a new route for delivering the data packets. This wastes the resources that are limited in MANET. In this paper, a new on-demand routing protocol is proposed, named on-demand routing protocol with backtracking (ORB), for multi-hop mobile ad hoc networks. We use the multiple routes and cache data technique to reduce the rediscovery times and overhead. After executing the route discovery phase, we find out a set of nodes, named checkpoint, which has the multiple routes to the destination. When a checkpoint node receives a data packet, it caches this data packet in its buffer within a specific time period. When a node detects a broken route during the data packets delivery or receives an error packet, it will either recover the broken route or reply the error packet to the source. If a node can not forward the data packet to the next node, it replies an error packet to the source. This packet is backtracking to search a checkpoint to redeliver the data packet to the destination along other alternate routes. The main advantage of ORB is to reduce the flooding search times, maybe just delay and cost while a route has broken. The experimental results show that the proposed scheme can increase the performance of delivery but reduce the overhead efficiently comparing with that of AODV based routing protocols. Hua-Wen Tsai received the B.S. degree in Information Management from Chang Jung Christian University, Taiwan, in June 1998 and the M.B.A. degree in Business and Operations Management from Chang Jung Christian University, Taiwan, in June 2001. Since September 2001, he has been working towards the Ph.D. degree and currently is a doctoral candidate in the Department of Computer Science and Information Engineering, National Cheng Kung University, Taiwan. His research interests include wireless communication, ad hoc networks, and sensor networks. Tzung-Shi Chen received the B.S. degree in Computer Science and Information Engineering from Tamkang University, Taiwan, in June 1989 and the Ph.D. degree in Computer Science and Information Engineering from National Central University, Taiwan, in June 1994. He joined the faculty of the Department of Information Management, Chung Jung University, Tainan, Taiwan, as an Associate Professor in June 1996. Since November 2002, he has become a Full Professor at the Department of Information Management, Chung Jung University, Tainan, Taiwan. He was a visiting scholar at the Department of Computer Science, University of Illinois at Urbana-Champaign, USA, from June to September 2001. He was the chairman of the Department of Information Management at Chung Jung University from August 2000 to July 2003. Since August 2004, he has become a Full Professor at the Department of Information and Learning Technology, National University of Tainan, Tainan, Taiwan. Currently, he is the chairman of the Department of Information and Learning Technology, National University of Tainan. He co-received the best paper award of 2001 IEEE ICOIN-15. His current research interests include mobile computing and wireless networks, mobile learning, data mining, and pervasive computing. Dr. Chen is a member of the IEEE Computer Society. Chih-Ping Chu received the B.S. degree in agricultural chemistry from National Chung Hsing University, Taiwan, the M.S. degree in computer science from the University of California, Riverside, and the Ph.D. degree in computer science from Louisiana State University. He is currently a Professor in the Department of Computer Science and Information Engineering of National Cheng Kung University, Taiwan. His current research interests include parallel computing, parallel processing, component-based software development, and internet computing.  相似文献   

2.
The main purposes of this article are to relieve broadcast problem, to immunize to some prerequisites, and to reduce the number of transmitted control packets. Broadcasting control packets network-wide is the most direct and common method for finding the required destination node in ad hoc mobile wireless networks; however, this causes a lot of waste of wireless bandwidth. To remedy the problem, routing protocols demanding some prerequisites are proposed; nonetheless, hardly can they be used if these prerequisites are missed or become stale. To efficiently reduce the number of transmitted control packets, our routing protocol partitions the network into interlaced gray districts and white districts by the aid of GPS and inhibits an intermediate node residing in a white district from re-transmitting the received control packets. However, a mobile node residing in a gray district is responsible for re-transmitting them till they reach the destination node. Our routing protocol does not demand any prerequisite except the use of GPS. Each mobile node can always obtain its own location information; furthermore, the information may neither be missed nor become stale. Our routing protocol is easy to be implemented, saves precious wireless bandwidth, and reduces almost half a number of control packets as compared with pure flooding routing protocols.Ying-Kwei Ho received the B.S. degree and M.S. degree in applied mathematics and in electrical engineering from the Chung-Cheng Institute of Technology in 1987 and 1993 respectively and the Ph.D. degree in computer engineering and science from the Yuan-Ze University, Taiwan, R.O.C. He joined the Army of Taiwan, R.O.C. in 1987 and worked as a software engineer. From 1993 to 1997, he was an instructor in the War Game Center of Armed Forces University, Taiwan, R.O.C. He is currently an assistant professor of the Department of Computer Science at Chung-Cheng Institute of Technology. His research interests include mobile computing, wireless network performance simulation and evaluation, and modeling and simulation.Ru-Sheng Liu received the B.S. degree in electrical engineering from the National Cheng-Kung University, Taiwan, in 1972 and the M.S. and Ph.D. degrees in computer science from the University of Texas at Dallas, Richardson, Texas, in 1981 and1985, respectively. He is currently an associate professor in the Department of Computer Engineering and Science at Yuan-Ze University, Chungli, Taiwan. His research interests are in the areas of mobile computing, internet technology, and computer algorithms.  相似文献   

3.
赵莉 《中兴通讯技术》2006,12(1):40-42,53
无线自组织(Ad hoc)网络的应用环境要求其必须提供一定的服务质量(QoS)保证,然而,无线信道固有的特点及节点移动造成网络拓扑的频繁变化,使得在无线Ad hoc网络中支持QoS较困难。可以采用Ad hoc QoS多播(AQM)协议通过事先预约邻居节点以跟踪资源的有效性等措施来解决这一问题。通过考虑传输时延、丢失率、带宽要求、时延抖动、吞吐量等QoS指标,寻找满足特定QoS要求的路由,AQM协议可以明显地改善多播通信的性能。网络仿真结果表明AQM协议基本适合Adhoc网络。  相似文献   

4.
In this paper we address the problem of multicasting in ad hoc wireless networks from the viewpoint of energy efficiency. We discuss the impact of the wireless medium on the multicasting problem and the fundamental trade-offs that arise. We propose and evaluate several algorithms for defining multicast trees for session (or connection-oriented) traffic when transceiver resources are limited. The algorithms select the relay nodes and the corresponding transmission power levels, and achieve different degrees of scalability and performance. We demonstrate that the incorporation of energy considerations into multicast algorithms can, indeed, result in improved energy efficiency.  相似文献   

5.
Analysis of TCP Performance over Mobile Ad Hoc Networks   总被引:27,自引:0,他引:27  
Holland  Gavin  Vaidya  Nitin 《Wireless Networks》2002,8(2-3):275-288
Mobile ad hoc networks have attracted attention lately as a means of providing continuous network connectivity to mobile computing devices regardless of physical location. Recent research has focused primarily on the routing protocols needed in such an environment. In this paper, we investigate the effects that link breakage due to mobility has on TCP performance. Through simulation, we show that TCP throughput drops significantly when nodes move, due to TCP's inability to recognize the difference between link failure and congestion. We also analyze specific examples, such as a situation where throughput is zero for a particular connection. We introduce a new metric, expected throughput, for the comparison of throughput in multi-hop networks, and then use this metric to show how the use of explicit link failure notification (ELFN) techniques can significantly improve TCP performance.  相似文献   

6.
移动自组织网QoS路由协议研究   总被引:1,自引:0,他引:1  
Qo S路由协议在移动自组织网的 Qo S保证中有十分重要的作用。本文首先从自组网特点出发 ,分析 Qo S路由设计的基本要求 ,然后从路由建立、链路状态信息的维护、路由控制开销和拓扑变化对协议的影响等方面详细介绍了 4种自组网 Qo S路由协议 ,最后提出了今后的研究方向  相似文献   

7.
Associativity-Based Routing for Ad Hoc Mobile Networks   总被引:56,自引:0,他引:56  
This paper presents a new, simple and bandwidth-efficient distributed routing protocol to support mobile computing in a conference size ad-hoc mobile network environment. Unlike the conventional approaches such as link-state and distance-vector distributed routing algorithms, our protocol does not attempt to consistently maintain routing information in every node. In an ad-hoc mobile network where mobile hosts (MHs) are acting as routers and where routes are made inconsistent by MHs' movement, we employ an associativity-based routing scheme where a route is selected based on nodes having associativity states that imply periods of stability. In this manner, the routes selected are likely to be long-lived and hence there is no need to restart frequently, resulting in higher attainable throughput. Route requests are broadcast on a per need basis. The association property also allows the integration of ad-hoc routing into a BS-oriented Wireless LAN (WLAN) environment, providing the fault tolerance in times of base stations (BSs) failures. To discover shorter routes and to shorten the route recovery time when the association property is violated, the localised-query and quick-abort mechanisms are respectively incorporated into the protocol. To further increase cell capacity and lower transmission power requirements, a dynamic cell size adjustment scheme is introduced. The protocol is free from loops, deadlock and packet duplicates and has scalable memory requirements. Simulation results obtained reveal that shorter and better routes can be discovered during route re-constructions.  相似文献   

8.
Channel Adaptive Shortest Path Routing for Ad Hoc Networks   总被引:6,自引:2,他引:6  
1 IntroductionAdhocnetworksareformedwithoutrequiringthepreexistinginfrastructureorcentralizedadminis tration ,incontrasttocellularnetworks.Asidefromtheoriginalmilitaryapplication ,ithasapplicationinpublicsafetyandcommercialareas,butadaptiveprotocolsarerequiredinorderforthemtodoso .Twoimportantcharacteristicsofacommunicationlinkinadhocnetworksareitsunreliabilityanditsvariability .Thelinksinsuchanetworkareunreli ablebecauseoffading ,interference,noise,andper hapsthefailureofthetransmittingorrec…  相似文献   

9.
GRID: A Fully Location-Aware Routing Protocol for Mobile Ad Hoc Networks   总被引:10,自引:0,他引:10  
A mobile ad hoc network (MANET) is one consisting of a set of mobile hosts capable of communicating with each other without the assistance of base stations. One prospective direction to assist routing in such an environment is to use location information provided by positioning devices such as global positioning systems (GPS). In this paper, we propose a new routing protocol called GRID, which tries to exploit location information in route discovery, packet relay, and route maintenance. Existing protocols, as compared to ours, are either not location-aware or partially location-aware in that location knowledge is not fully exploited in all these three aspects. One attractive feature of our protocol is its strong route maintenance capability – the intermediate hosts of a route can perform a handoff operation similar to that in cellular systems when it roams away to keep a route alive. This makes routes in the MANET more stable and insensitive to host mobility. Simulation results show that our GRID routing protocol can reduce the probability of route breakage, reduce the number of route discovery packets used, and lengthen routes' lifetime.  相似文献   

10.
The main purposes of this article are to lessen the influence of the fastchanging network topology, rapidly varying bandwidth information, and the increasing size of routing tables onquality of service routing. Based on DSDV (Destination-Sequenced Distance-Vector) routing protocol formaintaining up-to-date routing information, the related research has to update routing tables when networktopology changes; moreover, the routing tables must be updated periodically even though the networktopology has not changed. To put emphasis on QoS routing, they also have to exchange routing tables by thetime of bandwidth information changes. Furthermore, the size of routing tables increases with the numberof mobile nodes; therefore, the precious wireless bandwidth is wasted on transmitting the large-scalerouting tables. In this article, we propose an on-demand-based QoS routing protocol to mitigate theseproblems and to achieve the QoS requirement. The goal of this article is to discover an optimal routewith minimum time delay for transmitting real-time data from a source node hop by hop to adestination node under some predefined constraints. Our contributions are as follows: our researchprovides a rigorous bandwidth definition and bandwidth application, a broad view of bandwidth calculationand reservation, minimizing the size of control packets and the number of control packet transmissions,and an efficient QoS routing protocol.  相似文献   

11.
随着ad hoc网络的研究工作的发展,以Internet接入为代表的ad hoc网络的应用问题越来越被人们所关注.在本文中,我们提出了一个将ad hoc网络和移动IPv6相结合的方案,首先将基于动态源路由(dynamic source routing,DSR)的MANET升级到IPv6使其能够接入6Bone网,并通过搭建测试床进行了验证和测量;在此基础上,又提出了移动IPv6的兼容方案,并通过仿真对其在不同环境下的性能进行了验证.  相似文献   

12.
Internet Connectivity for Ad Hoc Mobile Networks   总被引:7,自引:0,他引:7  
The growing deployment rate of wireless LANs indicates that wireless networking is rapidly becoming a prevalent form of communication. As users become more accustomed to the use of mobile devices, they increasingly want the additional benefit of roaming. The Mobile IP protocol has been developed as a solution for allowing users to roam outside of their home networks while still retaining network connectivity. The problem with this solution, however, is that the deployment of foreign agents is expensive because their coverage areas are limited due to fading and interference. To reduce the number of foreign agents needed while still maintaining the same coverage, ad hoc network functionality can cooperate with Mobile IP such that multihop routes between mobile nodes and foreign agents can be utilized. In this work, we present a method for enabling the cooperation of Mobile IP and the Ad hoc On-Demand Distance Vector (AODV) routing protocol, such that mobile nodes that are not within direct transmission range of a foreign agent can still obtain Internet connectivity. In addition, we describe how duplicate address detection can be used in these networks to obtain a unique co-located care-of address when a foreign agent is not available.  相似文献   

13.
A mobile ad hoc network (MANET) is comprised of mobile hosts that can communicate with each other using wireless links. In this paper we present a novel routing algorithm called GPSAL (GPS/Ant-Like Routing Algorithm) which is based on GPS (Global Positioning System) and mobile software agents modeled on ants for routing in ad hoc networks. We compare our algorithm to the Location-Aided Routing (LAR) [20] algorithm for MANET which is also based on GPS. Simulation results show that our algorithm has less overhead than LAR.  相似文献   

14.
针对移动Ad Hoc网络传统重传机制存在的局限性,提出了一种新的重传控制算法(EX-TCGM),利用传输路径上的邻居节点传输丢失的数据包,使得路由上的任何节点都能够重传,并从理论上对该算法的有效性进行了分析.通过计算机仿真,并与按需距离矢量路由协议(AODV)、机会路由协议(ExOR)和分组移动传输控制方法(TCGM)进行了性能对比和分析,证明了EX-TCMG的有效性.  相似文献   

15.
ABRP: Anchor-based Routing Protocol for Mobile Ad Hoc Networks   总被引:2,自引:0,他引:2  
Ad hoc networks, which do not rely on any infrastructure such as access points or base stations, can be deployed rapidly and inexpensively even in situations with geographical or time constraints. Ad hoc networks are attractive in both military and disaster situations and also in commercial uses like sensor networks or conferencing. In ad hoc networks, each node acts both as a router and as a host. The topology of an ad hoc network may change dynamically, which makes it difficult to design an efficient routing protocol. As more and more wireless devices connect to the network, it is important to design a scalable routing protocol for ad hoc networks. In this paper, we present Anchor-based Routing Protocol (ABRP), a scalable routing protocol for ad hoc networks. It is a hybrid routing protocol, which combines the table-based routing strategy with the geographic routing strategy. However, GPS (Global Positioning System) (Kaplan, Understanding GPS principles and Applications, Boston: Artech House publishers, 1996) support is not needed. ABRP consists of a location-based clustering protocol, an intra-cell routing protocol and an inter-cell routing protocol. The location-based clustering protocol divides the network region into different cells. The intra-cell routing protocol routes packets within one cell. The inter-cell routing protocol is used to route packets between nodes in different cells. The combination of intra-cell and inter-cell routing protocol makes ABRP highly scalable, since each node needs to only maintain routes within a cell. The inter-cell routing protocol establishes multiple routes between different cells, which makes ABRP reliable and efficient. We evaluate the performance of ABRP using ns2 simulator. We simulated different size of networks from 200 nodes to 1600 nodes. Simulation results show that ABRP is efficient and scales well to large networks. ABRP combines the advantages of multi-path routing strategy and geographic routing strategy—efficiency and scalability, and avoids the burden—GPS support.  相似文献   

16.
The network addresses of principals in a mobile ad hoc network (MANET) are conventionally assumed to be public information. This may cause devastating consequences for MANETs deployed in hostile environments. For example, attackers can easily locate a target principal based his known network address and then launch a pinpoint attack. This paper identifies address privacy as a new security requirement to prevent attackers from ascertaining network addresses of MANET principals. We further present Swarms, the first solution to satisfying this requirement. Swarms eliminates the conventionally explicit one-on-one mappings between MANET principals and network addresses and allows any two principals to communicate while blind to each other’s address. We quantitatively measure the address privacy offered by Swarms via an entropy-based information-theoretic metric.
Kui RenEmail:

Yanchao Zhang   received the BE degree in computer communications from the Nanjing University of Posts and Telecommunications, Nanjing, China, in July 1999, the ME degree in computer applications from the Beijing University of Posts and Telecommunications, Beijing, in April 2002, the PhD degree in electrical and computer engineering from the University of Florida, Gainesville, in August 2006. Since then, he has been an assistant professor in the Department of Electrical and Computer Engineering, New Jersey Institute of Technology. His research interests include network and distributed system security, wireless networking, and mobile computing. He is an Associate Editor of IEEE Transactions on Vehicular Technology and has served as a TPC member for many conferences, including INFOCOM, MOBIHOC, ICDCS, and IWQoS. He is a member of the IEEE and the ACM. Kui Ren   is an assistant professor in the Electrical and Computer Engineering Department at Illinois Institute of Technology. He obtained his PhD degree in Electrical and Computer Engineering from Worcester Polytechnic Institute in 2007. He received his B. Eng and M. Eng both from Zhejiang University in 1998 and 2001, respectively. In the past, he has worked as a research assistant at Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, at Institute for Infocomm Research, Singapore, and at Information and Communications University, South Korea. His research interests include network security & privacy and applied cryptography with current focus on security & privacy in cloud computing, lower-layer attack & defense mechanisms for wireless networks, and sensor network security. His research is sponsored by US National Science Foundation. He serves as TPC member for many conferences including INFOCOM, ICDCS, WiSec, AsiaCCS, MASS, IWQoS, Securecomm, etc. He is a member of IEEE and ACM.   相似文献   

17.
A novel scheme is presented to integrate mobile ad hoc networks (MANETs) with the lnternet and support mobility across wireless local area networks (WLANs) and MANETs. The mobile nodes, connected as a MANET, employ the optimize d link state routing (OLSR) protocol for routing within the MANET. Mobility management across WLANs and MANETs is achieved through the hierarchical mobile IPv6 (HMIPv6) protocol. The performance is evaluated on a HMIPv6 based test-bed composed of WLANs and MANETs. The efficiency gain obtained from using HMIPv6 in such a hybrid network is investigated. The investigation result shows that the use of HMIPv6 can achieve up to 27% gain on reducing the handoff latency when a mobile roams within a domain. Concerning the reduction of the signaling load on the lnternet, the use of HMIPv6 can achieve at least a 54% gain and converges to 69%.  相似文献   

18.
Fuzzy Logic QoS Dynamic Source Routing for Mobile Ad Hoc Networks   总被引:1,自引:0,他引:1  
Considering the characters of dynamic topology and the imprecise state information in mobile ad hoc network,we propose a Fuzzy Logic QoS Dynamic Source Routing(FLQDSR)algorithm based on Dynamic Source Routing(DSR)protocol while adopting fuzzy logic to select the appropriate QoS routing in multiple paths which are searched in parallel.This scheme considers not only the bandwidth and end-to-end delay of routing,but also the cost of the path.On the otherhand the merit of using fuzzy logic is that it can be implemented by hardware.This makes the realization of the schemeeasier and faster.However our algorithm is based on DSR,the maximal hop count should be less than 10,i.e.,the scaleof mobile ad hoc network should not be very large.Simulation results show that FLQDSR can tolerate a high degree of in-formation imprecision by adding the fuzzy logic module which integrates the QoS requirements of application and the rout-ing QoS parameters to determine the most qualified one in every node.  相似文献   

19.
张勖  冯美玉  程胜  丁炜 《电子与信息学报》2005,27(11):1806-1812
该文提出了一种新的移动Ad hoc网络QoS路由算法:模糊逻辑QoS动态源路由算法。算法从模糊理论的思想出发,将业务的多个QoS参数进行综合评判产生一类以语言变量描述的请求,在修改动态源路由协议为多径路由算法的基础之上,对比各条路径综合模糊路由状态,选择出最适合业务请求的路径。仿真显示算法在支持QoS的同时对移动Ad hoc网络因拓扑动态变化而引起的信息不精确性有很好的适应度。  相似文献   

20.
一种节省能量的移动Ad Hoc网络组播选路协议   总被引:9,自引:0,他引:9  
鉴于现有基于网孔的移动Ad Hoc网络组播选路协议都滑考虑如何有效使用电池能量的问题,本文提出了一种节省能量组播选路协议(E^2MRP),E^2MRP协议的两个主要特征是:(1)在创建和维护中继组(RG)的过程中交替采用分组平均能量消耗最少和最大节点花费最小两种标准,(2)采用基于图的组播结构,本文通过仿真分析大大降低了节点的能量消耗,特别是在节移动性较低,组播成员较少时更是如此。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号