共查询到20条相似文献,搜索用时 15 毫秒
1.
《International Journal of Hydrogen Energy》2020,45(51):27622-27631
In this study, a novel way to improve performance of the air-cooled open cathode polymer electrolyte membrane fuel cell is introduced. We suggest using a metal foam in the cathode side of the planar unit fuel cell for the solution to conventional problems of the open cathode fuel cell such as excessive water evaporation from the membrane and poor transportation of air. We conduct experiment and the maximum power density of the fuel cell with metal foam increases by 25.1% compared with the conventional fuel cell without metal foam. The open cathode fuel cell with metal foam has smaller ohmic losses and concentration losses. In addition, we prove that the open cathode fuel cell with metal foam prevents excessive water evaporation and membrane drying out phenomena with numerical approach. Finally, we apply the metal foam to the air-cooled open cathode fuel cell stack as well as the planar unit cell. 相似文献
2.
Hee-Tak Kim Sang-Il Han Tae-Yoon Kim Sung-Yong Cho Myoung-Ki Min Geun-Seok Chai Soon-Cheol Shin 《Journal of power sources》2009,193(2):515-522
Electrochemical analysis of a commercial polymer electrolyte membrane fuel cell (PEMFC), operated at varying cathode relative humidity (RH) and current density, has been conducted to understand the factors that affect power performance when the PEMFC is operated with a dry-air feed. With a change in the cathode RH from 80 to 4%, the electrochemical area and double-layer capacitance of the cathode are reduced by 9 and 8%, respectively. This indicates that exclusion of the catalyst layer (CL) of the cathode from proton access occurs to some extent at low RH. It does not, however, explain the observed increase in activation loss. For the dry-air feed, the ionic resistances of the membrane and cathode CL are comparable in magnitude. Impedance analyses show that drying of the cathode at low RH and low current density leads not only to an increase in the ionic resistance of the CL, but also to increases in both charge-transfer and mass-transfer resistances. The simultaneous decrease in all the resistance components with decrease in the air permeability of the cathode diffusion layer highlights the importance of cathode design for operation with dry-air feed. 相似文献
3.
The role of cathodic structure on water management was investigated for planar micro-air-breathing polymer electrolyte membrane fuel cells (PEMFCs). The electrical results demonstrate the possibility to decrease, with the same structure, both cell drying and cell flooding according to the environmental and operation conditions. Thanks to a simultaneous study of internal resistance and scanning electronic microscope (SEM) images, we demonstrate the advantageous influence of the presence of crack in cathodic catalytic layer on water management. On the one hand, the gold layer used as cathodic current collector is in contact with the electrolyte in the cracked zones which allows water maintenance within the electrolyte. It allows to decrease the cell drying and thus strongly increase the electrical performances. For cells operated in a 10% relative humidity atmosphere at 30 °C and at a potential of 0.5 V, the current density increases from 28 mA cm−2 to 188 mA cm−2 (+570%) for the cell with a cathodic cracked network. On the other hand, the reduction in oxygen barrier diffusion due to the cathodic cracks allows to improve oxygen diffusion. In flooding state, the current densities were higher for a cell with a cracked network. For cells operating in a 70% relative humidity atmosphere at 30 °C and at a potential of 0.2 V, a current density increase from 394 mA cm−2 to 456 mA cm−2 (16%) was noted for the cell with a cathodic cracked network. Microscopic observations allowed us to visualize water droplets growth mechanism in cathodic cracks. It was observed that the water comes out of the crack sides and partially saturates the cracks before emerging on cathodic collector. These results demonstrate that cathode structuration is a key parameter that plays a major role in the water management of PEMFCs. 相似文献
4.
5.
Yulin Wang Shixue Wang Guozhuo Wang Like Yue 《International Journal of Hydrogen Energy》2018,43(4):2359-2368
The cathode flow-field design of a polymer electrolyte membrane (PEM) fuel cell is crucial to its performance, because it determines the distribution of reactants and the removal of liquid water from the fuel cell. In this study, the cathode flow-field of a parallel flow-field PEM fuel cell was optimized using a sub-channel. The main-channel was fed with moist air, whereas the sub-channel was fed with dry air. The influences of the sub-channel flow rate (SFR, the amount of air from the sub-channel inlet as a percentage of the total cathode flow rate) and the inlet positions (SIP, where the sub-channel inlets were placed along the cathode channel) on fuel cell performance were numerically evaluated using a three-dimensional, two-phase fuel cell model. The results indicated that the SFR and SIP had significant impacts on the distribution of the feed air, removal of liquid water, and fuel cell performance. It was found that when the SIP was located at about 30% along the length of the channel from main-channel inlet and the SFR was about 70%, the PEM fuel cell exhibited much better performance than seen with a conventional design. 相似文献
6.
Tilda Akiki Willy Charon Marie-Christine Iltchev Gilbert Accary Raed Kouta 《Journal of power sources》2010,195(16):5258-5268
In the literature, many models and studies focused on the steady-state aspect of fuel cell systems while their dynamic transient behavior is still a wide area of research. In the present paper, we study the effects of mechanical solicitations on the performance of a proton exchange membrane fuel cell as well as the coupling between the physico-chemical phenomena and the mechanical behavior. We first develop a finite element method to analyze the local porosity distribution and the local permeability distribution inside the gas diffusion layer induced by different pressures applied on deformable graphite or steel bipolar plates. Then, a multi-physical approach is carried out, taking into account the chemical phenomena and the effects of the mechanical compression of the fuel cell, more precisely the deformation of the gas diffusion layer, the changes in the physical properties and the mass transfer in the gas diffusion layer. The effects of this varying porosity and permeability fields on the polarization and on the power density curves are reported, and the local current density is also investigated. Unlike other studies, our model accounts for a porosity field that varies locally in order to correctly simulate the effect of an inhomogeneous compression in the cell. 相似文献
7.
Yong-Hun Cho Jin Woo Bae Yoon-Hwan Cho Ju Wan Lim Minjeh Ahn Won-Sub Yoon Nak-Hyun Kwon Jae Young Jho Yung-Eun Sung 《International Journal of Hydrogen Energy》2010
In this work, a surface modified Nafion 212 membrane was fabricated by plasma etching in order to enhance the performance of a membrane electrode assembly (MEA) in a polymer electrolyte membrane fuel cell. Single-cell performance of MEA at 0.7 V was increased by about 19% with membrane that was etched for 10 min compared to that with untreated Nafion 212 membrane. The MEA with membrane etched for 20 min exhibited a current density of 1700 mA cm−2 at 0.35 V, which was 8% higher than that of MEA with untreated membrane (1580 mA cm−2). The performances of MEAs containing etched membranes were affected by complex factors such as the thickness and surface morphology of the membrane related to etching time. The structural changes and electrochemical properties of the MEAs with etched membranes were characterized by field emission scanning electron microscopy, Fourier transform-infrared spectrometry, electrochemical impedance spectroscopy, and cyclic voltammetry. 相似文献
8.
Nigel A. David Peter M. Wild Jingwei Hu Nedjib Djilali 《Journal of power sources》2009,192(2):376-380
A new application of in-fibre Bragg grating (FBG) sensors for the distributed measurement of temperature inside a polymer electrolyte membrane fuel cell is demonstrated. Four FBGs were installed on the lands between the flow channels in the cathode collector plate of a single test cell, evenly spaced from inlet to outlet. In situ calibration of the FBG sensors against a co-located micro-thermocouple shows a linear, non-hysteretic response, with sensitivities in good agreement with the expected value. A relative error of less than 0.2 ° C over the operating range of the test cell (∼20-80 °C) was achieved, offering sufficient resolution to measure small gradients between sensors. While operating the fuel cell at higher current densities under co-flow conditions, gradients of more than 1 ° C were measured between the inlet and outlet sensors. Due to their small thermal mass, the sensors also exhibit good temporal response to dynamic loading when compared with the thermocouple. Design and instrumentation of the graphite collector plate features minimal intrusion by the sensors and easy adaptation of the techniques to bipolar plates for stack implementation. 相似文献
9.
A review of polymer electrolyte membrane fuel cell stack testing 总被引:2,自引:0,他引:2
This paper presents an overview of polymer electrolyte membrane fuel cell (PEMFC) stack testing. Stack testing is critical for evaluating and demonstrating the viability and durability required for commercial applications. Single cell performance cannot be employed alone to fully derive the expected performance of PEMFC stacks, due to the non-uniformity in potential, temperature, and reactant and product flow distributions observed in stacks. In this paper, we provide a comprehensive review of the state-of-the art in PEMFC testing. We discuss the main topics of investigation, including single cell vs. stack-level performance, cell voltage uniformity, influence of operating conditions, durability and degradation, dynamic operation, and stack demonstrations. We also present opportunities for future work, including the need to verify the impact of stack size and cell voltage uniformity on performance, determine operating conditions for achieving a balance between electrical efficiency and flooding/dry-out, meet lifetime requirements through endurance testing, and develop a stronger understanding of degradation. 相似文献
10.
Yoon-Hwan Cho Yong-Hun Cho Ju Wan Lim Hee-Young Park Namgee Jung Minjeh Ahn Heeman Choe Yung-Eun Sung 《International Journal of Hydrogen Energy》2012
Pd-based nanoparticles, such as 40 wt.% carbon-supported Pd50Pt50, Pd75Pt25, Pd90Pt10 and Pd95Pt5, for anode electrocatalyst on polymer electrolyte membrane fuel cells (PEMFCs) were synthesized by the borohydride reduction method. PdPt metal particles with a narrow size distribution were dispersed uniformly on a carbon support. The membrane electrode assembly (MEA) with Pd95Pt5/C as the anode catalyst exhibited comparable single-cell performance to that of commercial Pt/C at 0.7 V. Although the Pt loading of the anode with Pd95Pt5/C was as low as 0.02 mg cm−2, the specific power (power to mass of Pt in the MEA) of Pd95Pt5/C was higher than that of Pt/C at 0.7 V. Furthermore, the single-cell performance with Pd50Pt50/C and Pd75Pt25/C as the anode catalyst at 0.4 V was approximately 95% that of the MEA with the Pt/C catalyst. This indicated that a Pd-based catalyst that has an extremely small amount of Pt (only 5 or 50 at.%) can be replaced as an anode electrocatalyst in PEMFC. 相似文献
11.
Jincheol Kim Dong-Min Kim Sung-Yug Kim Suk Woo Nam Taegyu Kim 《International Journal of Hydrogen Energy》2014
In the present study, a short circuit controller for use in the humidification of polymer electrolyte membrane fuel cells was developed for unmanned aerial vehicles (UAVs). Fuel cells (FCs) require an external humidifier to avoid drying up. Particularly in UAV applications, humidity control is more important because the boiling point of water decreases with increase in flight altitude. In this study, overcurrent was generated by short-circuiting an FC to humidify the electrolyte membrane and improve the electric power output. An FC controller incorporating a short circuit unit was developed, and a battery was hybridized with the FC to compensate the power when the latter was short-circuited. The performance of the FC was evaluated for the interval (period) and duration of short circuit. Using this method, the power output was improved by 16% when short circuit control was operated at the optimal condition. 相似文献
12.
Hao Pan Liangfei Xu Siliang Cheng Weihua Sun Jianqiu Li Minggao Ouyang 《International Journal of Hydrogen Energy》2017,42(29):18584-18594
Gas purging process of cathode side during the shut-down procedure of a polymer electrolyte membrane fuel cell (PEMFC) system is of great importance for a successful cold start. This paper proposes a study on the modeling and control of the cathodic gas purging process, whose main purpose is to remove liquid water in the gas diffusion layer (GDL) and the membrane. The water removal process can be divided into three steps, which are called (a) the through-plane drying of the GDL, (b) the in-plane drying of the GDL, and (c) the vapor-transport from the membrane. A nonlinear model is firstly developed to describe the water removal process in the GDL and the membrane. It includes a one-dimensional three-step purging sub-model and an energy consumption sub-model considering the properties of the air compressor. Experiments are carried out to validate the water-remove model by using the membrane HFR. An optimal constant purging control strategy that minimizes energy consumption during the cathodic purging process is designed based on the model and verified in simulation. 相似文献
13.
L. Karpenko-Jereb P. Innerwinkler A.-M. Kelterer C. Sternig C. Fink P. Prenninger R. Tatschl 《International Journal of Hydrogen Energy》2014
This work presents the development of a 1D model describing water and charge transport through the polymer electrolyte membrane (PEM) in the fuel cell. The considered driving forces are electrical potential, concentration and pressure gradients. The membrane properties such as water diffusion and electro-osmotic coefficients, water sorption and ionic conductivity are treated as temperature dependent functions. The dependencies of diffusion and electro-osmotic coefficients on the membrane water concentration are described by linear functions. The membrane conductivity is computed in the framework of the percolation theory under consideration that the conducting phase in the PEM is formed by a hydrated functional groups and absorbed water. This developed membrane model was implemented in the CFD code AVL FIRE using 1D/3D coupling. The simulated polarization curves at various humidification of the cathode are found in good agreement with the experiments thus confirming the validity of the model. 相似文献
14.
A free vibration analysis of a polymer electrolyte membrane fuel cell (PEMFC) is performed by modelling the PEMFC as a 20 cm × 20 cm composite plate structure. The membrane, gas diffusion electrodes, and bi-polar plates are modelled as composite material plies. Energy equations are derived based on Mindlin's plate theory, and natural frequencies and mode shapes of the PEMFC are calculated using finite element modelling. A parametric study is conducted to investigate how the natural frequency varies as a function of thickness, Young's modulus, and density for each component layer. It is observed that increasing the thickness of the bi-polar plates has the most significant effect on the lowest natural frequency, with a 25% increase in thickness resulting in a 17% increase in the natural frequency. The mode shapes of the PEMFC provide insight into the maximum displacement exhibited as well as the stresses experienced by the single cell under vibration conditions that should be considered for transportation and stationary applications. This work provides insight into how the natural frequencies of the PEMFC should be tuned to avoid high amplitude oscillations by modifying the material and geometric properties of individual components. 相似文献
15.
Degradation behaviors of polymer electrolyte membrane fuel cell (PEMFC) in high current density region were investigated under Freeze/Thaw cycles. Different dehumidification scenarios namely hot purge, cold purge and no purge were adopted for comparison. Micrographs from scanning electron microscopy proved little change in catalyst-coated membrane (CCM) integrity, no delamination or segregation occurred after many freeze/thaw cycles. Cyclic Voltammetry (CV) measurement revealed reduction in electrochemical active surface area of CCM. The observed performance decay in the high current density region was mainly attributed to the increased interface contact resistance and degraded electric and gas coupling characteristics at interfaces between CCM and GDL in this paper. Meanwhile, the performance degradation under low current densities (for example 400 mA cm−2 or even lower) was mainly ascribed to the degraded characteristics of catalyst layers referring to CCM as cyclic voltammetry indicated. Proper dehumidification through gas purging is effective to maintain stable preference under subzero temperature. 相似文献
16.
Yong-Hun Cho Jinho Kim Tae-Yeol Jeon Namgee Jung Ju Wan Lim Won-Sub Yoon Yung-Eun Sung 《Journal of power sources》2010,195(18):5952-9515
A catalyst-coated membrane (CCM) as used in the membrane electrode assembly (MEA) of a polymer electrolyte membrane fuel cell is treated by dilute sulfuric acid solution (0.5 M) at boiling temperature for 1 h. This treatment improves the single-cell performance of the CCM without further addition of Pt catalyst. The changed microstructure and electrochemical properties of the catalyst layer are investigated by field emission scanning electron microscopy with energy dispersive X-ray, mercury intrusion porosimetry, waterdrop contact angle measurement, Fourier transform-infrared spectrometry in attenuated total reflection mode, electrochemical impedance spectroscopy, and cyclic voltammetry. The results indicate that this pretreatment enhances MEA performance by changing the microstructure of the catalyst layer and thus changing the degree of hydration, and by modifying the Pt surface, thus enhancing the oxygen reduction reaction. 相似文献
17.
Philip L. Hentall J. Barry Lakeman Gary O. Mepsted Paul L. Adcock Jon M. Moore 《Journal of power sources》1999,80(1-2):235-241
Polymer Electrolyte Membrane Fuel cells for automotive applications need to have high power density, and be inexpensive and robust to compete effectively with the internal combustion engine. Development of membranes and new electrodes and catalysts have increased power significantly, but further improvements may be achieved by the use of new materials and construction techniques in the manufacture of the bipolar plates. To show this, a variety of materials have been fabricated into flow field plates, both metallic and graphitic, and single fuel cell tests were conducted to determine the performance of each material. Maximum power was obtained with materials which had lowest contact resistance and good electrical conductivity. The performance of the best material was characterised as a function of cell compression and flow field geometry. 相似文献
18.
Water transport in polymer electrolyte membrane fuel cells 总被引:2,自引:0,他引:2
Kui JiaoXianguo Li 《Progress in Energy and Combustion Science》2011,37(3):221-291
Polymer electrolyte membrane fuel cell (PEMFC) has been recognized as a promising zero-emission power source for portable, mobile and stationary applications. To simultaneously ensure high membrane proton conductivity and sufficient reactant delivery to reaction sites, water management has become one of the most important issues for PEMFC commercialization, and proper water management requires good understanding of water transport in different components of PEMFC. In this paper, previous researches related to water transport in PEMFC are comprehensively reviewed. The state and transport mechanism of water in different components are elaborated in detail. Based on the literature review, it is found that experimental techniques have been developed to predict distributions of water, gas species, temperature and other parameters in PEMFC. However, difficulties still remain for simultaneous measurements of multiple parameters, and the cell and system design modifications required by measurements need to be minimized. Previous modeling work on water transport in PEMFC involves developing rule-based and first-principle-based models, and first-principle-based models involve multi-scale methods from atomistic to full cell levels. Different models have been adopted for different purposes and they all together can provide a comprehensive view of water transport in PEMFC. With the development of computational power, application of lower length scale methods to higher length scales for more accurate and comprehensive results is feasible in the future. Researches related to cold start (startup from subzero temperatures) and high temperature PEMFC (HT-PEMFC) (operating at the temperatures higher than 100 °C) are also reviewed. Ice formation that hinders reactant delivery and damages cell materials is the major issue for PEMFC cold start, and enhancing water absorption by membrane electrolyte and external heating have been identified as the most effective ways to reduce ice formation and accelerate temperature increment. HT-PEMFC that can operate without liquid water formation and membrane hydration greatly simplifies water management strategy, and promising performance of HT-PEMFC has been demonstrated. 相似文献
19.
Effect of water on life prediction of liquid silicone rubber seals in polymer electrolyte membrane fuel cell 总被引:1,自引:0,他引:1
Liquid silicone rubber (LSR) is a popular gasket or seal material and is also promising for sealing applications in polymer electrolyte membrane fuel cell (PEMFC). The durability of the LSR gasket/seals in PEMFC is one of the major issues in commercialization of PEMFC. As there are water and humidity inside PEMFC and polymers such as LSR generally exhibit stress relaxation property, it is important to understand the effect of water on the compression stress relaxation of LSR. Our test results show that water has no influence on the stress relaxation in the beginning, but it accelerates the relaxation after a certain time. Higher temperature makes this transition occurs earlier. Further studies reveal that water can diffuse into LSR and exists as free water molecules. It may attack the backbones of the polymer and thus accelerate the stress relaxation. High temperature tends to aggravate the attack of water to the polymer chains. The attack coexists with the thermal degradation of the LSR. 相似文献