首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The heat exhaust coefficient and smoke flow characteristics under lateral smoke exhaust in tunnel fires were studied in this paper. Through the dimensional analysis, the dimensionless relationship between the heat exhaust coefficient, heat release rate, exhaust vent size, and exhaust velocity was obtained. In addition, this paper also studied the effect of the lateral exhaust vent on the smoke flow field. Results showed that the lateral smoke exhaust caused strong air entrainment on the downstream of the exhaust vent and boundary layer separation on the upstream of the exhaust vent. As the exhaust velocity increased, the degree of air entrainment gradually increased, and the smoke layer near the exhaust vent gradually became thinning and plug‐holing phenomenon occurred; meanwhile, the boundary layer separation would be suppressed or disappear, but the increase of the heat release rate would enhance the boundary layer separation. As the exhaust vent got narrower, the air entrainment downstream of the exhaust vent was reduced, and the boundary layer separation also got weaker.  相似文献   

2.
Yan Wang  Fan Wu  Peihong Wu 《火与材料》2020,44(2):283-295
This paper investigates the effects of passenger blockage on smoke flow properties in longitudinally ventilated tunnel fires. A series of numerical simulations were conducted in a 1/5 small-scale tunnel with the different heat release rates (50-100 kW), longitudinal ventilation velocities (0.5-1 m/s), passenger blockage lengths (2-6 m), and ratios (0.17-0.267). The typical smoke flow properties in different tunnel fire scenarios are analyzed, and the results show that under the same heat release rate and longitudinal ventilation velocity, the smoke back-layering length, maximum smoke temperature, and downstream smoke layer height decrease with increasing passenger blockage length or ratio. The Li correlations can well predict the smoke back-layering length and maximum smoke temperature in tunnel fire scenarios without the passenger blockage. When the passenger blockage exists, the modified local ventilation velocity that takes the blockage length and ratio into account has been proposed to correct the Li correlations. The smoke back-layering length and maximum smoke temperature with the different blockage lengths and ratios can be predicted by the modified correlations, which are shown to well reproduce the simulation results.  相似文献   

3.
A series of experiments were carried out in a model‐scale tunnel with dimension of 6.0 m × 1.0 m × 0.7 m to investigate the smoke spread behaviors and the typical smoke layer height. Alcohol was employed as fuel, and the heat release rate was set to be 9.5, 18.4, 30.1, and 63.5 kW, respectively. The temperature profile in the tunnel was measured, and the buoyant flow stratification conditions were visualized by a laser sheet. The experiment results show that the N percentage rule would greatly influence by subjective factors. As the N (10, 20, 30) value increases, the smoke layer height also increases. The results calculated by the buoyancy frequency method were more accurate. Fan's prediction method (Fan WC, Wang QG, Jiang FH. Concise Guide of Fire Science. He Fei: University of Science and Technology of China Press; 1995.161 p.) does not accurately evaluate the smoke layer thickness in tunnel fire. An enhanced empirical formula for predicting the smoke layer thickness in the one‐dimensional horizontal spread stage was proposed. It is shown that the empirical formula could well predict the smoke layer thickness by comparing with the experimental data of previous studies.  相似文献   

4.
The critical ventilation velocity is almost the most well‐investigated fire phenomenon in the tunnel fire research field whereas previous studies have always investigated it when the fire source is distant from the downstream tunnel exit. Fortunately, a recent study provided a set of data on the critical ventilation velocity for tunnel fires occurring near tunnel exits by small‐scaled experiments, nevertheless, with a lack of further analysis. To demonstrate the relationship of the critical ventilation velocity and the distance between the fire and tunnel exit more explicitly and detailedly, a quantitative and graphical study was carried out and a correlation was presented in this paper. Inspired by this, a set of small‐scaled experiments were carried out to investigate the influence of different longitudinal fire locations on maximum smoke temperature under the tunnel ceiling. Results show that unlike the critical ventilation velocity, the maximum smoke temperature was not obviously affected by longitudinal fire location. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
This study investigated the efficacy of the full transverse exhaust method for smoke extraction in tunnel fires. It examines factors such as the number and layout of air supply and exhaust outlets, analyzing their impact on smoke spread, tunnel temperature, visibility, and airflow. The results demonstrate that the full transverse exhaust method effectively controls smoke emissions in raised highway tunnels. It limits smoke spread, reduces tunnel temperature, and effectively controls the fire-affected area. The number and layout of outlets significantly influence smoke dispersion, with fewer exhaust outlets providing better smoke control and optimizing the tunnel environment. However, insufficient outlets disrupt gas flow stability. The position of exhaust outlets affects smoke distribution, and caution is advised to prevent directing fresh air flow toward the fire. Opening an equal number of exhaust outlets on one side of the fire source yields superior smoke extraction results, reducing tunnel ceiling temperatures and minimizing risks to personnel and structures. Though stabilization may take longer, this configuration proves advantageous. The study offers valuable insights and practical guidelines for implementing the full transverse smoke control method in real-world scenarios.  相似文献   

6.
Investigation of smoke bifurcation flow has been receiving more attentions, however, delicate quantitative analyses on different regions of the bifurcation flow have rarely been addressed. In this study, a series of small-scale experiments were conducted to investigate smoke bifurcation flow in longitudinal ventilated tunnels. Results show that when longitudinal ventilation velocity increases to a certain value, the smoke bifurcation phenomenon emerges, and a low-temperature region forms in the center of the tunnel. Similar to the natural conditions, smoke development under relatively strong ventilation can also be subdivided into four regions. With the increase of ventilation velocity, the ceiling impact region, side wall impact region, and convergence region of two smoke streams move further downstream, indicating that the bifurcation phenomenon becomes more evident. A simple model is proposed based on theoretical analysis and experimental phenomenon to predict two characteristic lengths of smoke bifurcation flow: the offset distance of ceiling impact region and the length of low-temperature region. Both characteristic lengths increase with ventilation velocity and can be well correlated with the dimensionless ventilation velocity defined in Equation (2) ( V ). The results of this work could provide references for both tunnel ventilation designers and fire science researchers.  相似文献   

7.
This study investigated the influence of the longitudinal airflow on the smoke propagation in a tunnel by large-eddy simulation, which is now widely applied to study the turbulent flow. The smoke movement characteristics were studied in detail, with varying the longitudinal airflow in the tunnel. Six fire scenarios have been simulated with Fire Dynamics Simulator (FDS) and the results of the longitudinal distribution of CO concentration, temperature distribution, interface height, stratification, and the efficiency of smoke extraction in the tunnel have been analyzed to evaluate the different fire cases. FDS predicted a CO concentration distribution compared to calculated values using the Hu model. Furthermore, the predicted maximum smoke temperatures are compared to those given by the Kurioka model. A reasonably good agreement has been obtained for both models. The obtained results showed that the increase of the forced airflow velocity has for results a loss of stratification and significant decrease in the efficiency of extraction.  相似文献   

8.
A series of numerical simulations were conducted in order to investigate the characteristics of smoke back‐layering and critical ventilation in the road tunnel at high altitude with reduced ambient atmospheric pressures. The results indicated that the smoke back‐layering length decreases with the reduction of ambient pressure. Meanwhile, the dimensionless critical longitudinal ventilation velocity decreases with one‐third power of the factor of ambient pressure at high altitude. By modifying the traditional dimensionless fire heat release rate with ambient pressure, new models were deduced to predict the smoke back‐layering length and critical ventilation velocity in the road tunnel at high altitude.  相似文献   

9.
Understanding smoke temperature distributions and transport characteristics is of great importance to control and exhaust thermal-driven smoke. However, previous studies have focused on this problem in plain areas, whereas ambient pressure decreases as elevation increases. This study investigates the influence of ambient pressure on the hot gas temperature distribution and movement characteristics in a tunnel fire. A series of numerical simulations are carried out in a vehicle tunnel with various heat release rates (HRRs) and ambient pressures. The results show that the maximum temperature and longitudinal temperature distribution under the tunnel ceiling increase with decreasing ambient pressure due to less heat loss caused by lower air density. In addition, the vertical temperatures of the smoke are slightly higher under lower ambient pressure, and this phenomenon makes the smoke spread slightly faster while the smoke layer thickness remains nearly the same under different ambient pressures. The results can provide a reference for tunnel lining design and ventilation arrangements in high-altitude areas.  相似文献   

10.
In coal mining, smoke flow from tunnel fires can easily cause a large number of deaths in the ventilation network. But the optimal smoke flow path control methods and automatic control system were lacked. In order to improve the efficiency of fire emergency rescue, the control mechanism and regional linkage control system for fire induced smoke flow in ventilation network was studied. Based on a ventilation system in coal mines, different fire scenarios for smoke flow were analysed using ventilation simulation software (VSS). Smoke flow control methods were simulated under different ventilation modes, a contrastive analysis was conducted for the respective effects and the optimal smoke flow path control methods were confirmed in different fire scenarios. A new type of ventilation facility, regional monitoring sub-stations and remote linkage control platforms were developed for smoke control. A reliability evaluation model for the control system was established by Bayesian network. The failure of the linkage control is 98.9%, the monitoring sub-station is 64.4%, the sub-station communication is 43.9%; thus, a double insurance of the control process must be realised. Since its application, the proposed regional linkage control system has been repeatedly tested through fire drills, and good results have been obtained.  相似文献   

11.
The combustion characteristics of multisource fire and single-source fire are quite different, and there is little research on the influence of multisource fire on the natural smoke extraction effect of shaft in urban tunnels. Therefore, in this article, the method of numerical simulation was used to study the influence of fire power and distance between two fire sources on the natural smoke extraction effect of shaft and the temperature distribution in tunnel in the case of multisource fire. Typical characteristics of smoke are analyzed, such as mass flow rate, temperature distribution, velocity vector, and CO concentration. The simulation results show that when there is a certain distance between the fire sources, the two flames are inclined and close to each other. The smoke temperature under the ceiling is higher under multiple fire sources than that under single fire source. In addition, when one of the fire sources is located at the downstream of the shaft, the smoke emission in the shaft is relatively high. As the distance between fire sources continues to increase, the smoke exhaust rate basically remains stable, and an empirical relationship between smoke exhaust rate and fire source location is established.  相似文献   

12.
In a longitudinally ventilated tunnel fire, the backlayering flow propagated in the opposite direction to the air current is the most fatal contaminations to users which are blocked upstream of the fire. In the present paper, numerical simulations were conducted using Fire Dynamic Simulator, which is based on large eddy simulations to estimate the backlayering arrival time in a longitudinally ventilated tunnel fire. The effect of a vehicle obstruction on the backlayering arrival time will be also investigated. For this, a vehicle model occupying about 31% of the tunnel cross section is simulated upstream of the fire source with its location relative to the tunnel floor is varied. The numerical investigation shows that the inertia and the buoyancy forces produced by ventilation and fire, respectively, affect the backlayering spread. The backlayering arrival time increases with the longitudinal ventilation velocity while it decreases with the fire heat release rate. When a vehicle obstruction existed within the tunnel, the numerical results show an increase of backlayering arrival time. This increase is significantly more important with the fire distance when the vehicle obstruction approaches the tunnel floor. Two correlations are developed, with and without obstruction in the tunnel, to predict the backlayering arrival time against the distance to fire. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Fires in enclosures equipped with mechanical ventilation remain one of the key issues for fire safety assessment in multifamily homes and industries. Therefore, a wide variation of methods for preventing smoke spread through the ventilation system exist and are applied, in performance‐based designs. Through the use of the heating, ventilation and air conditioning (HVAC) model in the fire dynamics simulator, several different common and less common methods for preventing smoke spread in the ventilation system were tested. The effects on smoke spread with changing building leakage and fire growth rates were also investigated. The results were evaluated by determining the total soot spread from the fire room to other compartments connected to the ventilation system, as well as soot/thermal load on the fans and system in general. The maximum and average heat release rate was also of interest and hence compared between systems. It was found that, while many methods perform similar, a few proven methods, such as fire and smoke dampers, performed very well with very little smoke spread to the rest of the system. The study should be considered as an introduction to implementing a similar methodology in specific cases because different ventilations systems will present very different challenges and weaknesses. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
An evaluation of actual and simulated smoke properties   总被引:1,自引:0,他引:1  
Federal regulations require that aircraft cargo compartment smoke detection systems be certified by testing their operation in flight. For safety reasons, only simulated smoke sources are permitted in these certification tests. To provide insight into smoke detection certification in cargo compartments, this research investigates the morphology, transport and optical properties of actual and simulated smoke sources. Experimental data show the morphology of the particulate in smoke from flaming fires is considerably different from simulated smoke. Although the detection of smoldering fires is important as well, only a qualitative assessment and comparison of smoldering sources was possible; therefore, efforts were concentrated on the quantitative comparison of smoke from flaming fires and smoke generators. The particulate for all three different flaming fires was solid with similar morphological properties. Simulated smoke was composed of relatively large liquid droplets, and considerably different size droplets can be produced using a single machine. Transport behavior modeling showed that both the actual and simulated smoke particulates are sufficiently small to follow the overall gas flow. However, actual smoke transport will be buoyancy driven due to the increased temperature, while the simulated smoke temperature is typically low and the release may be momentum driven. The morphology of the actual and simulated smoke were then used to calculate their optical properties. In contrast to the actual smoke from a flaming fire, which is dominated by absorption, all of the extinction for the simulated smoke is due to scattering. This difference could have an impact on detection criteria and hence the alarm time for photoelectic smoke detectors since they alarm based on the scattering properties of the smoke. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
Large confined space has high incidence of fires, which seriously threatens the safety of people working there. Understanding the distribution of smoke in such large space is critical to fire development prediction and smoke control. Three improved methods for the stratification interface prediction of fire smoke are developed, including of improved intra-variance, integral ratio and N-percentage methods. In these methods, the interface height is determined by the vertical temperature distribution based on a three-layer smoke zone model, which is an improvement of a two-layer zone model. Thereafter, the three improved methods are applied to several typical fire cases simulated CFD to predict the smoke interface, and their applicability and reliability are verified by comparison of the smoke stratification results with the filed simulation results. Results show that the three improved methods can effectively determine the location of the three-layer zone model's interface, and they have the ability to predict smoke interface for fires with different fire source types and ventilation conditions.  相似文献   

16.
Eight free burning and two sprinklered fire tests were performed with electrical cable trays and live digital switch racks in a large enclosure to simulate telecommunications central office (TCO) fires started by electrical overheating. Very‐slow‐growing (non‐flaming), slower‐growing (partially flaming) and low‐intensity‐faster‐growing (flaming) fires releasing gray‐white, gray, and black smoke, respectively, were observed in the tests. Under quiescent conditions present in the unvented enclosure fire tests for cables, very‐slow‐growing fires were detected in about 1452 s, whereas the slower‐growing fires were detected in about 222 s by commercial fire detectors. Under ventilation conditions typical of TCOs, detection times were very similar for the five types of commercial TCOs fire detectors used in the tests. The average detection times for slower‐growing fires (cable fires) and low‐intensity‐faster‐growing fires (digital switch rack fires) were 242±17% and 249±11%s respectively. The TCO procedures to reduce smoke damage from fires (on fire detection, inlet ventilation flow is turned off and exhaust flow is turned on) were found to be beneficial. The extent of smoke damage decreased significantly with an increase in the exhaust flow rate. The chloride ion mass deposition suggested that equipment recovery would be possible in the smoke environment if the cable vapor concentration could be reduced below about 3 g/m3. The metal corrosion rate was found proportional to the 0.6th power of the smoke concentration, similar to that found for the corrosion of metal surfaces exposed to aqueous solutions of HCl and HNO3 and for acid rain with no protective layer at the surface. Sprinkler water was found to wash down the smoke deposits on the surfaces with little indication of corrosion enhancement. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
Based on large eddy simulation, a series of long tunnel fire experiments with different heat release rates (HRRs) and altitudes were carried out. The vertical temperature and thickness of fire smoke are studied. The simulation results show that the higher the altitude, the lower the flame temperature rise, while the change of smoke plume temperature rise is opposite. The movement of smoke in the tunnel can be divided into four regions, and the smoke layer thickness in the longitudinal direction of the tunnel corresponds to the latter three regions. The thickness in Region II increases along the longitudinal direction, the thickness in Region III is a constant value, and the thickness in Region IV increases along the longitudinal direction. Besides, the change of altitude only has an effect on the smoke layer thickness in Region IV. Then, by considering the altitude, HRR, and smoke layer thickness, and using dimensional analysis, an empirical formula for predicting the smoke layer thickness under the influence of altitude in Region IV was established.  相似文献   

18.
The combustion characteristics of methanol‐gasoline blends pool fires were studied in a series of full‐scale tunnel experiments conducted with different methanol and gasoline blends. The parameters were measured including the mass loss rate, the pool surface temperature, the fire plume centerline temperature, the ceiling temperature, the smoke layer temperature profile, the flame height, and the smoke layer interface height. The gasoline components were analyzed by GC‐MS. The effects of azeotropism on the combustion characteristics of the different blends were discussed. On the basis of the results of the fire plume centerline temperature, the ceiling temperature, and the flame height, it shows that the tunnel fire regime gradually switches from fuel controlled to ventilation controlled with increasing gasoline fractions in the blends. The fire plume can be divided into 3 regions by the fire plume centerline temperature for the different blends. The N‐percentage rule to determine the smoke layer interface height is found to be applicable for tunnel fires with different blends for N = 26.  相似文献   

19.
To address the effect of metro train blockage on the critical ventilation velocity in a long tunnel, a series of scenarios were conducted numerically through this study, including different fire sizes (5-10 MW), metro train lengths (80-120 m), and blockage ratios (φ, 0.50, and 0.57). It is known from the numerical results that the metro train length shows a limited effect on the critical ventilation velocity, which is because the longitudinal ventilation has become stable before reaching the fire source to prevent smoke back-layering, and increasing the metro train length only increases the distance of stabilizing the longitudinal ventilation. The blockage ratio shows an obvious influence on the critical ventilation velocity, which is because the presence of the metro train can obviously reduce the flow cross-sectional area of the tunnel. An empirical model is developed as well, while it is known that the critical ventilation velocity increases with the one-third power of dimensionless heat release rate and (1-φ). The research outcomes of this study provide a technical guide for the design of the metro tunnel and the relevant emergency management of fire rescue under fire conditions.  相似文献   

20.
The heat release rate (HRR) of fuels has been described as the single important variable of fuels in fire hazard, and the HRR experimental measurement remains a key issue in fire science. A modified carbon‐dioxide generation (CDG) method, applying a three‐zone smoke model, is developed to predict the HRR of gas, liquid, and solid fuel fires. The three‐zone smoke model with three layers is determined by the vertical thermal stratification, and their physical thermal properties are computed. The application of modified method on typical gas fuel, liquid fuel, and simple solid‐fuel fires is verified. The prediction accuracy is examined quantitatively by the cosine similarity comparison of predicted results with the experimental data. In addition, the ventilation effects on the predicted results are also explored. Results show that the application of three‐zone model improves the HRR prediction accuracy, because it can accurately capture the mixing behavior from the upper layer to the lower layer. The effect of ventilation on modified CDG method is positive as the ventilation enhances the smoke mixing and the smoke distribution in each layer is relatively uniform.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号