首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a method composed of state of health (SOH) testing experiments and artificial intelligence simulation is proposed to carry out the study on the change of battery characteristic during its operation and generate mathematical models for the prediction of aging behaviour of battery. An experiment comprising of multidisciplinary parameters-based SOH detection is conducted to study the battery aging characteristics from several aspects (ie, electrochemistry, electric, thermal behaviour and mechanics). In total, 200 sets of data (corresponding 200 charging/discharging cycles) are collected from the experiment. The data obtained from the first 150 cycles are employed in generation of the models. The result of sensitivity analysis based on the obtained genetic programming models shows that it is better to apply voltage value at the end of charging step, charging time and cycle number to predict the operational performance of the battery. The average predicted accuracy of model (without stress) is 94.52%, whereas the average predicted accuracy of model (with stress effect) is 99.42%. The proposed models could be useful for defining the optimised charging strategy, fault diagnosis and spent batteries disposal strategies.  相似文献   

2.
针对某纯电动客车电池箱散热效果不佳的问题,本文基于CFD技术以该车的电池箱散热系统为研究对象,建立了估算锂离子电池生热速率数学模型,采用三维软件UG建立电池箱的几何模型,并利用软件Star-ccm+对该模型的速度场和温度场进行仿真和分析。通过添加导流板等措施,对电池箱的结构进行了优化改进,并进行了正交仿真实验,确定了电池箱导流散热的最优方案,结果表明,导流板能够降低电池箱内单体电池的最高温度,使电池组温度分布更加均匀。  相似文献   

3.
For the construction of an all-electric race car, all aspects from engineering design over cost estimation up to the road capability are illuminated. From the most promising batteries for electric vehicle propulsion, the state-of-the art and commercial availability of lithium-ion secondary batteries is critically discussed with respect to cycle-life and unfavorable charge-discharge conditions. A market-overview is given with respect to a small electric car. Different combinations of electric motors and a recuperation system have been investigated. Weight aspects of central drive systems were considered and compared with decentralized wheel-hub drives. As a result, a centralized high-speed drive train based on a permanent-magnet synchronous engine with high-energy magnets seems to be superior due to limited space for assembly.  相似文献   

4.
Olivine structured LiFePO4 (lithium iron phosphate) and Ti4+-doped LiFe1−xTixPO4 (0.01 ≤ x ≤ 0.09) powders were synthesized via a solution route followed by heat-treatment at 700 °C for 8 h under N2 flowing atmosphere. The compositions, crystalline structure, morphology, carbon content, and specific surface area of the prepared powders were investigated with ICP-OES, XRD, TEM, SEM, EA, and BET. Capacity retention study was used to investigate the effects of Ti4+ partial substitution on the intercalation/de-intercalation of Li+ ions in the olivine structured cathode materials. Among the prepared powders, LiFe0.97Ti0.03PO4 manifests the most promising cycling performance as it was cycled with C/10, C/5, C/2, 1C, 2C, and 3C rate. It showed initial discharge capacity of 135 mAh g−1 at 30 °C with C/10 rate. From the results of GSAS refinement for the prepared samples, the doped-Ti4+ ions did not occupy the Fe2+ sites as expected. However, the occupancy of the doped Ti4+ ions are still not clear, and theoretical calculations are needed for further studies. From the variation of lattice parameters calculated by the least square method without refinement, it suggested that Ti4+-doped LiFePO4 samples formed solid solutions at low doping levels while TiO2 was also observed with TEM in samples prepared with doping level higher than 5 mol%.  相似文献   

5.
6.
7.
安全性是制约锂离子电池规模应用的重要技术问题。锂离子电池的安全性能不仅仅与材料体系、电芯设计相关,还会随着使用过程而发生变化。锂离子电池安全性能在全生命周期内的演变规律需要重点展开研究,以保障电池在使用过程中的安全性。本文对锂离子电池全生命周期安全性演变问题的国内外研究进展进行了综述,分析了国内外关于电池安全性能在循环老化和储存老化两种工况下的演变规律的研究,总结了电池老化衰减机理与安全性能变化之间的关系,指出负极析锂是影响电池全生命周期安全性能的重要因素,最后对锂离子电池全生命周期安全性演变研究进行了展望。  相似文献   

8.
目前大规模商业化的锂二次电池普遍采用有机碳酸酯类的液态电解质,易泄露、易燃烧、易爆炸等安全问题限制了该类电解质的进一步应用。全固态聚合物电解质(all-solid-state polymer electrolytes,ASPEs)电池具有安全性能好、能量密度高、工作温度区间广、循环寿命长等优点,是锂离子电池领域的研究热点之一。ASPEs通常还具有优异的力学性能,可以很好地抑制锂金属电极在充放电过程中的枝晶生长,所以在锂金属电池领域也具有十分重要的应用前景。作者综述了研究较多的几种ASPEs体系,包括聚氧化乙烯(PEO)基体系、聚碳酸酯基体系、聚硅氧烷基体系、聚合物锂单离子导体体系。PEO基ASPEs是研究最早且研究最多的一类ASPEs材料,但其高结晶性造成室温Li+迁移困难、离子电导率低等问题,所以研究人员研发了一系列降低PEO结晶度、提升体系离子电导率的改性手段。聚碳酸酯基ASPEs主链结构中含有强极性碳酸酯基团而且室温无定形态,使得锂盐更容易解离,且室温离子电导率一般较PEO基要高,是比较有潜力的PEO基ASPEs替代材料。除了碳链聚合物,玻璃化转变温度较低的聚硅氧烷基ASPEs体系也因为其较高的离子电导率受到研究人员关注。在锂电池充放电过程中,Li+才是有效载荷子,电解质中阴离子的迁移会增加电解质体系的浓差极化,所以阴离子不发生迁移、Li+迁移数接近于1的聚合物锂单离子导体也是一类具有研究价值的ASPEs材料。最后,本综述讨论了全固态聚合物电解质的应用前景及未来发展方向,指出了PEO基体系的研究重点在于发展有机-无机复合体系、聚碳酸酯基体系的研究重点在于发展与其它聚合物的共混体系、聚硅氧烷基体系的研究重点在于增强体系力学性能、聚合物锂单离子导体体系的研究重点在于设计离子电导率更高的新型聚阴离子锂盐。  相似文献   

9.
Safety is the key-feature of large-size lithium-ion batteries and thermal stability of the electrolytes is crucial. We investigated the thermal and flammability properties of mixed electrolytes based on the conventional ethylene carbonate-dimethyl carbonate (1:1 wt/wt)-1 M LiPF6 and the hydrophobic ionic liquid N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr14TFSI). The results of thermogravimetric analyses and flammability tests of mixed electrolytes of different compositions are reported and discussed. An important finding is that though the mixtures with high contents of ionic liquid are more difficult to ignite, they burn for a longer time, once they are ignited.  相似文献   

10.
The fabrication of flexible nickel-based cable batteries is presented. Different fabrication methods, as well as formulations, were studied. It was found that iron anodes were more suitable than zinc electrodes for the helix design used in the cable/rope-shaped cells, possibly due to their higher stability in the alkaline environment. Furthermore, the addition of a thin polytetrafluoroethylene (PTFE) layer to the electrodes enhanced their mechanical stability, making them more durable and stable when twisted into helixes during cell assembly and packaging. A single-step precipitation reaction was used to load iron oxides directly onto carbon nanotubes, which promoted contact between iron/iron oxide particles and conductive additives and thus improved the discharge capacity of the batteries. After optimizations, the typical iron anode showed initial specific capacity higher than 90 mAh g−1, though it decreased to around 60 mAh g−1 and remained more stable as cycles continued. The cable cells also remained functional and showed consistent performance under bent conditions.  相似文献   

11.
Online state of health (SOH) prediction of lithium-ion batteries remains a very important problem in assessing the safety and reliability of battery-powered systems. Deep learning techniques based on recurrent neural networks with memory, such as the long short-term memory (LSTM) and gated recurrent unit (GRU), have very promising advantages, when compared to other SOH estimation algorithms. This work addresses the battery SOH prediction based on GRU. A complete BMS is presented along with the internal structure and configuration parameters. The neural network was highly optimized by adaptive moment estimation (Adam) algorithm. Experimental data show very good estimation results for different temperature values, not only at room value. Comparisons performed against other relevant estimation methods highlight the performance of the recursive neural network algorithms such as GRU and LSTM, with the exception of the battery regeneration points. Compared to LSTM, the GRU algorithm gives slightly higher estimation errors, but within similar prediction error range, while needing significantly fewer parameters (about 25% fewer), thus making it a very suitable candidate for embedded implementations.  相似文献   

12.
报道了一种新型移动式钠离子电池储能系统,其核心储能器件为钠离子电池,采用自制的NaNi1/3Fe1/3Mn1/3O2为正极材料,负极材料为硬碳。采用XRD、DSC等对正极材料的结构和热稳定性进行分析表征。设计制作了1 A·h软包型钠离子电池,对其电化学性能与安全性进行测试。在此基础上设计了钠离子电池包以及基于钠离子电池的0.1 kW·h新型移动式储能系统。该系统在家用储能、军事电源、低速电动车上有良好的应用前景。  相似文献   

13.
In this article, a nondissipative equalization scheme is proposed to reduce the inconsistency of series connected lithium-ion batteries. An improved Buck-Boost equalization circuit is designed, in which the series connected batteries can form a circular energy loop, equalization speed is improved, and modularization is facilitated. This article use voltage and state of charge (SOC) together as equalization variables according to the characteristics of open-circuit voltage (OCV)-SOC curve of lithium-ion battery. The second-order RC equivalent circuit model and back propagation neural network are used to estimate the SOC of lithium-ion battery. Fuzzy logic control (FLC) is used to adjust the equalization current dynamically to reduce equalization time and improve efficiency. Simulation results show that the traditional Buck-Boost equalization circuit and the improved Buck-Boost equalization circuit are compared, and the equalization time of the latter is reduced by 34%. Compared with mean-difference algorithm, the equalization time of FLC is decreased by 49% and the energy efficiency is improved by 4.88% under static, charging and discharging conditions. In addition, the proposed equalization scheme reduces the maximum SOC deviation to 0.39%, effectively reducing the inconsistency of batteries.  相似文献   

14.
Min Kim 《Journal of power sources》2010,195(24):8302-8655
Inorganic particulate film/poly(methyl methacrylate) (PMMA)/inorganic particulate film trilayer separators are prepared by means of simple dip-coating of inorganic particle layers on to both sides of PMMA thin films. The mechanical, thermal and electrochemical characteristics of the trilayer are investigated using scanning electron microscopy, a universal tensile machine, a thermal shrinkage test and a charge-discharge test. As a polymer matrix, PMMA has exceptional compatibility with the carbonate-based liquid electrolyte, which can result in improved battery/cell performance. When inorganic Al2O3 particles are used to coat the PMMA film, drawbacks associated with gel-type membranes, namely, poor dimensional stability and thermal stability are greatly improved. This inorganic trilayer membrane is believed to be an inexpensive, novel separator for application in lithium-ion batteries.  相似文献   

15.
The coulomb counting method is expedient for state-of-charge (SOC) estimation of lithium-ion batteries with high charging and discharging efficiencies. The charging and discharging characteristics are investigated and reveal that the coulomb counting method is convenient and accurate for estimating the SOC of lithium-ion batteries. A smart estimation method based on coulomb counting is proposed to improve the estimation accuracy. The corrections are made by considering the charging and operating efficiencies. Furthermore, the state-of-health (SOH) is evaluated by the maximum releasable capacity. Through the experiments that emulate practical operations, the SOC estimation method is verified to demonstrate the effectiveness and accuracy.  相似文献   

16.
Electrospun, non-woven membrane of high molecular weight poly(acrylonitrile) (PAN) is demonstrated as an efficient host matrix for the preparation of gel polymer electrolytes for lithium-ion batteries. Electrospinning process parameters are optimized to get a fibrous membrane of PAN consisting of bead-free, uniformly dispersed thin fibers with diameter in the range 880-1260 nm. The membrane with good mechanical strength and porosity exhibits high uptake when activated with the liquid electrolyte of 1 M LiPF6 in a mixture of organic solvents and the gel polymer electrolyte shows ionic conductivity of 1.7 × 10−5 S cm−1 at 20 °C. Electrochemical performance of the gel polymer electrolyte at 20 °C is evaluated in lithium-ion cell with lithium cobalt oxide cathode and graphite anode. Good performance with a low capacity fading on charge-discharge cycling is demonstrated.  相似文献   

17.
Many fire accidents of electric vehicles were reported that happened during the charging process. In order to investigate the reasons that lead to this problem, this paper studies the thermal safety of Li-ion batteries under limited overcharge abuse. A 3D electrochemical-thermal coupled model is developed for modeling thermal and electrochemical characteristics from normal charge to early overcharge state. This model is validated by experiment at charge rates of 0.5C, 1C, and 2C. The simulation results indicate that irreversible heat contributes most to temperature rise during the normal charge process, but the heat induced by Mn dissolution and Li deposition gradually dominates heat generation in the early overcharge period. Based on this, a threshold selection method for multistage warning of batteries overcharge is proposed. Among them, level 1 should be considered as a critical stage during the early overcharge process due to the deposited lithium starts to react with electrolyte at the end of level 1, where temperature rate increases to 0.5°C min−1 for 1C charge. While the thresholds of levels depend on charge rate and composition of battery. Furthermore, several critical parameters are analyzed to figure out their effects on thermal safety. It is found that the temperature at the end of overcharge is significantly influenced by the change of positive electrode thickness and solid electrolyte interface (SEI) film resistance. The final temperature increases by 17.5°C and 7.9°C, respectively, with positive electrode thickness ranging from 50 to 80 μm and SEI film resistance increasing from 0.002 to 0.03 Ω.  相似文献   

18.
A detailed investigation of the effect of the thermal stabilizing additive, propane sultone (PS), on the reactions of the electrolyte with the surface of the electrodes in lithium-ion cells has been conducted. Cells were constructed with meso-carbon micro-bead (MCMB) anode, LiNi0.8Co0.2O2 cathode and 1.0 M LiPF6 in 1:1:1 EC/DEC/DMC electrolyte with and without PS. After formation cycling, cells were stored at 75 °C for 15 days. Cells containing 2% PS had better capacity retention than cells without added PS after storage at 75 °C. The surfaces of the electrodes from cycled cells were analyzed via a combination of TGA, XPS and SEM. The addition of 2% PS results in the initial formation of S containing species on the anode consistent with the selective reduction of PS. However, modifications of the cathode surface in cells with added PS appear to be the source of capacity resilience after storage at 75 °C.  相似文献   

19.
锂离子电池内短路是锂离子电池热失控事故中最常见的诱因之一,也是机械滥用、电滥用、热滥用的共性环节,是潜在的安全威胁。本文从锂离子电池内短路安全问题出发,综述了内短路机理的研究进展,归纳了内短路替代实验方法,介绍了内短路演化过程,指出了内短路检测需在其发展初期和中期完成。进而,总结了多种内短路检测方法,最后,对内短路问题下一步研究进行了展望。  相似文献   

20.
Titanium oxide nanotube and graphite composites are prepared by adding graphite before and after a hydrothermal reaction to enhance the cyclic performance and high-rate capability of lithium-ion batteries. The composite powders, their anode electrodes, and lithium half-cells containing the anodes are characterized by means of morphological and crystalline analysis, Raman spectroscopy, cyclic voltammetry, impedance spectroscopy, and repeated discharge-charge cycling at low and high C-rates. Notably, the composite anode (R5G5-T) that concurrently uses natural graphite and rutile particles before the hydrothermal reaction shows superior high-rate capability and achieves a discharge capacity of ca. 70 mAh g−1 after 100 cycles at 50 C-rate. This may be due to the high-rate supercapacitive reactions of the TiO2 nanotube on the graphite surface caused by a diffusion-controlled or a charge-transfer process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号