首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 289 毫秒
1.
A district cooling and heating (DCH) system can provide both cooling and heating for blocks of buildings in cold climate areas, however, different thermal source schemes of a DCH project always differ in their first cost, operating cost, maintenance cost, regulation performance, control performance, energy-saving and environment protection performance, etc. In order to evaluate various DCH thermal source schemes quantitatively, the paper firstly establishes an evaluation model based on value engineering theory. It then elaborates on how this model is applied in the first seawater source heat pump DCH project in China—Dalian Xinghai Bay project. The calculation results show that even though the scheme of seawater source heat pump system is not economical under commercial electricity price mainly because of its relatively high initial cost, yet it has the highest value coefficient under civil electricity price. This also implies that privileges of policy for renewable energy utilization system are necessary to help promote the energy-saving and environment-friendly scheme of seawater source heat pump system.  相似文献   

2.
地源热泵是一种利用土壤所储藏的太阳能资源作为冷热源进行能量转换的供暖制冷空调系统,通过输入少量的高品位能源(如电力、机械功、燃气和液体燃料),实现热量从低温热源向高温热源的转移.以上海某小型别墅为对象,设计了一套家用地源热泵空调系统.首先计算了夏季冷负荷和冬季热负荷,然后根据冷、热负荷选择一套水源热泵机组(MWH080CR型机组)和相应的风机盘管,进行了室内水管环路系统、土壤热交换器和地板采暖的设计选型,最后对系统的能效比进行了计算.结果表明,该空调系统具有节能环保、稳定可靠、舒适耐用等优点.  相似文献   

3.
《Applied Thermal Engineering》2003,23(15):1959-1970
As the alternative to the heating furnace for crude oil heating, a heat pump system utilizing produced water, a main byproduct, in oil fields was proposed and the thermodynamic model of the system was established. A particular compression process with inner evaporative spray water cooling was applied in the screw compressor and an analysis method for the variable-mass compression process was introduced. The simulation results showed that the efficiency of the screw compressor, the temperature of produced water and the temperature difference in flash process are key parameters affecting the system performance. The energy cost of the heat pump system was compared to that of the heating furnace, revealing that the heat pump system with EER, 4.67, would save over 20% energy cost as compared with the heating furnace. Thus, the heat pump system was energy saving, money saving and environmentally benign.  相似文献   

4.
Shallow geothermal systems such as open and closed geothermal heat pump (GHP) systems are considered to be an efficient and renewable energy technology for cooling and heating of buildings and other facilities. The numbers of installed ground source heat pump (GSHP) systems, for example, is continuously increasing worldwide. The objective of the current study is not only to discuss the net energy consumption and greenhouse gas (GHG) emissions or savings by GHP operation, but also to fully examine environmental burdens and benefits related to applications of such shallow geothermal systems by employing a state-of the-art life cycle assessment (LCA). The latter enables us to assess the entire energy flows and resources use for any product or service that is involved in the life cycle of such a technology. The applied life cycle impact assessment methodology (ReCiPe 2008) shows the relative contributions of resources depletion (34%), human health (43%) and ecosystem quality (23%) of such GSHP systems to the overall environmental damage. Climate change, as one impact category among 18 others, contributes 55.4% to the total environmental impacts. The life cycle impact assessment also demonstrates that the supplied electricity for the operation of the heat pump is the primary contributor to the environmental impact of GSHP systems, followed by the heat pump refrigerant, production of the heat pump, transport, heat carrier liquid, borehole and borehole heat exchanger (BHE). GHG emissions related to the use of such GSHP systems are carefully reviewed; an average of 63 t CO2 equivalent emissions is calculated for a life cycle of 20 years using the Continental European electricity mix with 0.599 kg CO2 eq/kWh. However, resulting CO2 eq savings for Europe, which are between ?31% and 88% in comparison to conventional heating systems such as oil fired boilers and gas furnaces, largely depend on the primary resource of the supplied electricity for the heat pump, the climatic conditions and the inclusion of passive cooling capabilities. Factors such as degradation of coefficient of performance, as well as total leakage of the heat carrier fluid into the soil and aquifer are also carefully assessed, but show only minor environmental impacts.  相似文献   

5.
The performance of a photovoltaic solar assisted heat pump (PV-SAHP) with variable-frequency compressor is reported in this paper. The system is a direct integration of photovoltaic/thermal solar collectors and heat pump. The solar collectors extract the required thermal energy from the heat pump and at the same time, the cooling effect of the refrigerant lowers the working temperature of the solar cells. So this combined system has a relatively high thermal performance with an improved photovoltaic efficiency. To adapt to the continuously changing solar radiation and ambient temperature conditions, the refrigerant mass flow rate should match the heat gain at the evaporator accordingly. A variable-frequency compressor and an electricity-operated expansion valve were used in the proposed system. Mathematical models were developed to evaluate the energy performance of the combined system based on the weather conditions of Tibet. The simulation results indicated that on a typical sunny winter day with light breeze, the average COP could reach 6.01, and the average electricity efficiency, thermal efficiency and overall efficiency were 0.135, 0.479 and 0.625 respectively.  相似文献   

6.
A thermodynamic analysis of a hybrid geothermal heat pump system is carried out. Mass, energy, and exergy balances are applied to the system, which has a cooling tower as a heat rejection unit, and system performance is evaluated in terms of coefficient of performance and exergy efficiency. The heating coefficient of performance for the overall system is found to be 5.34, while the corresponding exergy efficiency is 63.4%. The effect of ambient temperature on the exergy destruction and exergy efficiency is investigated for the system components. The results indicate that the performance of hybrid geothermal heat pump systems is superior to air-source heat pumps.  相似文献   

7.
The installation of photovoltaic panels (PVs) on the roof of residential and commercial buildings is getting widespread as these areas stand normally idle and can be used for another purpose without losing an inhabited space. Considering the solar potential of Turkey, a significant amount of electricity generation is possible using current PV technology. For this reason, a two-story detached school building located in ?zmir, Turkey was taken into consideration and monthly as well as annual coverage ratio of an on-grid PV system for its entire energy requirement (including heating, cooling and lighting) was investigated. The PVs were installed on the south face of the school building roof. A heat pump, with a typical coefficient of performance (COP) value of 2.5, was used for supplying required cooling and heating. The heating, cooling and lighting loads were determined on a monthly basis. The average monthly electrical energy generation of the mounted PVs was calculated using a written code in Energy Equation Solver (EES) software. As a result, the monthly as well as yearly electrical energy demand coverage ratio values for the school using the installed PVs were revealed. Since the school building has a large south faced roof, the installation of PVs is very suitable to meet the cumulative electrical energy need of the heat pump and the lighting load. For Case 1, 180 PVs, which supply the entire yearly demand (with a 110% coverage ratio), were taken into consideration, while for Case 2, 265 PVs, which cover 75% of the roof area, were evaluated. The results showed that between November and March, PV electrical energy generation is not sufficient to meet all energy need of the school for both cases. However, significant coverage ratio values were observed for the rest of the year. In a yearly basis, the PV generation exceeded the building demand by 62% for the Case 2. This conclusion points out that the school can meet its yearly electricity need with the considered PV system and can even have an additional financial profit by selling its surplus PV electricity to the grid. Economic and environmental payback time values as well as simple payback time value were also computed for both investigated cases. The results pointed out a simple payback time of 7.9 years for Case 1 and 7.6 years for Case 2. Energy payback time was determined as 5 years for both systems. The greenhouse gas payback time of 2.7 years and 5.9 years was encountered for coal based and natural gas based calculations.  相似文献   

8.
The ground-coupled heat pump (GCHP) system is a type of renewable energy technology providing space heating and cooling as well as domestic hot water. However, experimental studies on GCHP systems are still insufficient. This paper first presents an energy-operational optimisation device for a GCHP system involving insertion of a buffer tank between the heat pump unit and fan coil units and consumer supply using quantitative adjustment with a variable speed circulating pump. Then, the experimental measurements are used to test the performance of the GCHP system in different operating modes. The main performance parameters (energy efficiency and CO2 emissions) are obtained for one month of operation using both classical and optimised adjustment of the GCHP system, and a comparative analysis of these performances is performed. In addition, using TRNSYS (Transient Systems Simulation) software, two simulation models of thermal energy consumption in heating, cooling and domestic hot-water operation are developed. Finally, the simulations obtained using TRNSYS are analysed and compared to experimental data, resulting in good agreement and thus the simulation models are validated.  相似文献   

9.
胡先芳  李玉云  马勇  胡贵华  赵亚洲 《节能技术》2012,30(4):353-356,365
通过对某办公楼地源热泵系统的短期测试与长期监测,分析了影响系统能效的主要因素,得出了该热回收热泵机组的部分负荷制冷性能系数低于额定工况下的制冷性能系数,热泵系统能效比略高于常规机组系统能效比下限值2.4,得出了夏热冬冷地区实际累计采暖+卫生热水热负荷大于累计冷负荷,增量成本的实际回收期高于预测回收期。建议夏热冬冷地区采用三工况(制冷、制热、热回收)地源热泵系统,可不设辅助冷却系统。  相似文献   

10.
冯永华  林梅 《节能技术》2006,24(6):501-503
基于热力学第一定律,反映热泵能量数量关系的性能指标-供热系数,在用于评价热泵系统节能效益及对热泵系统进行可行性评价的问题上,存在一定的局限性。本文对这一问题进行了分析。在此基础上,根据热力学第二定律,提出了以热泵系统单位火用损供热率作为其性能评价指标的思想。以此作为热泵系统的性能评价指标,更科学、更客观。  相似文献   

11.
A novel heat pump system is proposed in that the PV/T collector is coupled with a solar assisted heat pump and works as an evaporator. The cooling effect of the refrigerant allows the PV modules to work at lower temperature and so its photovoltaic efficiency is improved. Mathematical model has been developed to analyze the complex energy conversion processes. Numerical simulation was then performed based on the distributed parameters approach. An experimental rig was also built to verify the real performance of the system as compared to the simulation model prediction. The results indicated that this photovoltaic solar assisted heat pump (PV-SAHP) has better coefficient of performance (COP) and photovoltaic efficiency than the separate units. Under the experimental conditions, the COP of the PV-SAHP reached 8.4 and the average value was around 6.5, whereas the average photovoltaic efficiency was around 13.4%. The experimental results were found in good agreement with the theoretical predictions on the system responses to changing environmental conditions.  相似文献   

12.
  目的  随着数字经济的发展,数据中心的“规模”将不断扩大,“算力”不断提高,随之带来的“能耗”及“运行成本”也将不断攀升。为实现数据中心余热的有效利用,并实现能效的联动优化,构建了一种基于CO2热泵的产消型数据中心能源系统。  方法  将数据中心视为产消者,耗电的同时将制冷系统的余热回收,用于住宅供暖。产消型数据中心能源系统采用空气直接冷却、直膨式地埋管冷却和建筑供暖末端冷却三种方式实现数据中心全年的冷却,最大程度利用自然冷却,降低系统电耗。CO2作为余热回收用热泵的工作介质,能够提高系统紧凑性与环境友好性。  结果  本系统可有效削减冷负荷,进而在平均占用率较低时,实现制冷电耗的降低。当平均占用率为0.6时,与常规房间级风冷空调机组相比,本系统可降低全年冷负荷108 MWh,节约电耗制冷电耗167 MWh,为建筑供热290 MWh,获得年收益4.23万元。  结论  本系统可实现数据中心余热回收用于建筑供暖,实现了数据中心非供暖期余热的有效利用。并通过地源热泵系统实现了数据中心余热与建筑热负荷的协调,为产消型数据中心的能效联动优化提供了借鉴。  相似文献   

13.
The energy needs of a typical one-family house in the Thessaloniki area for heating, cooling and domestic hot water production are calculated. The calculations are based on the typical average daily consumption of hot water and on the degree-day method for heating and cooling. The results are finally translated into thermal energy consumption, assuming the typical Greek situation (heating with diesel oil boilers and conventional radiators, cooling with local air-to-air split-type heat pumps and hot water production with electric heaters). The same energy needs are assumed to be covered by a vertical closed loop ground heat exchanger combined with a water-to-water heat pump system with fan-coils for heating and cooling and a thermosyphonic solar system for domestic hot water production. The ground heat exchanger/heat pump system efficiency is determined using data from an existing and continuously monitored similar system installed in the broader area of Thessaloniki. The solar system load coverage is calculated using the f-chart method. The energy consumption of the renewable energy systems is calculated and compared to that of the conventional system. The results prove that significant energy savings can be achieved.  相似文献   

14.
以桂林市岩溶地质条件下某地源热泵系统示范项目为研究对象,基于典型季节运行工况下的实测数据,按照影响因素重要度排序主要研究系统极低负荷率及机组负荷率对地源热泵系统运行效果的影响。研究结果表明:在典型季节系统负荷率低于30%及机组负荷率大于80%工况下地源热泵系统处于良好的运行状态,机组与水泵耗电量占比符合输配系统能耗要求。热泵机组在7月运行期间机组平均制冷性能系数为4.48,平均系统制冷能效比为3.59;1月运行期间机组平均制热性能系数为4.26,平均系统制热能效比为3.32;夏冬季节节能率高达30.72%和35.93%。地源热泵系统的节能效果显著,值得在桂林地区推广应用。  相似文献   

15.
For the purpose of decreasing the peak electricity, balancing the on and off-peak electric load and utilizing the renewable geothermal energy, a new integrated system with cooling storage in soil and a ground-coupled heat pump is presented. In the integrated system, the moist soil acts as the material for cooling storage, and pipes serve as the cooling storage devices and geothermal heat exchangers simultaneously. In the cooling season, the cooling energy is stored in soil during the off-peak period and is extracted for space cooling during the on-peak period. While in other seasons, the system works as a ground-coupled heat pump for heating or cooling. A mathematical model which describes the charging and discharging processes of the integrated system has been developed and validated, and a computer code has been implemented to simulate the operational performance of cooling charging and discharging in soil. A parametric study indicates that the charging inlet temperature, tube diameter, moisture content of soil and pipe distance are important factors in determining the cyclic performance of the integrated system.  相似文献   

16.
介绍了胜利油田东二联污水源热泵原油加热试验项目的工艺流程,并进行了用能分析和经济性评价。结果表明,热泵系统的制热系数和一次能源利用率较高,分别为6.35和1.83;热泵系统可用能利用率很低,只有27.07%;燃油价格越高,采用加热炉加热的效益越差,采用污水源热泵加热方式的经济性越好;污水温度越高,热泵制热系数越高,制热效果越好,耗电越少。  相似文献   

17.
为探讨地源热泵系统的实际运行能效,通过对武汉市地源热泵系统的短期测试与长期监测,讨论了热泵及系统的实际性能系数、水泵效率、水系统输送系数等,得出了热回收系统实际平均综合能效系数为2.34,低于无热回收机组的性能系数3.77;水泵实际运行平均效率为43.9%,系统实际能效系数是额定能效系数的58.9%;实际累计负荷是计算累计负荷的1/3~2/3,实际投资回收期大于计算回收期。还得出了合理选择设备及附件、提高系统设备能效及附件质量、设置调整水泵输送能力的设施以及合理运行调节是提高地源系统实际能效的重要技术措施等结论。  相似文献   

18.
Although a solid oxide fuel cell combined with a gas turbine (SOFC-GT) has good performance, the temperature of exhaust from gas turbine is still relatively high. In order to recover the waste heat of exhaust from the SOFC-GT to enhance energy conversion efficiency as well as to reduce the emissions of greenhouse gases and pollutants, in this study a new combined cooling, heat and power (CCHP) system driven by the SOFC is proposed to perform the trigeneration by using ammonia-water mixture to recover the waste heat of exhaust from the SOFC-GT. The CCHP system, whose main fuel is methane, can generate electricity, cooling effect and heat effect simultaneously. The overall system performance has been evaluated by mathematical models and thermodynamic laws. A parametric analysis is also conducted to examine the effects of some key thermodynamic parameters on the system performance. Results indicate that the overall energy conversion efficiency exceeds 80% under the given conditions, and it is also found that the increasing the fuel flow rate can improve overall energy conversion efficiency, even though both the SOFC efficiency and electricity efficiency decrease. Moreover, with an increased compressor pressure ratio, the SOFC efficiency, electricity efficiency and overall energy conversion efficiency all increase. Ammonia concentration and pressure entering ammonia-water turbine can also affect the CCHP system performance.  相似文献   

19.
Self-powered heating equipment has the potential for high overall energy efficiency and can provide an effective means of providing on site power and energy security in residential homes. It is also attractive for remote communities where connection to the grid is not cost effective. Self-powered residential heating systems operate entirely on fuel combustion and do not need externally generated electricity. Excess power can be provided for other electrical loads. To realize this concept, one must develop a reliable and low maintenance means of generating electricity and integrate it into fuel-fired heating equipment. In the present work, a self-powered residential heating system was developed using thermoelectric power generation technology. A thermoelectric module with a power generation capacity of 550 W was integrated into a fuel-fired furnace. The thermoelectric module has a radial configuration that fits well with the heating equipment. The electricity generated is adequate to power all electrical components for a residential central heating system. The performance of the thermoelectric module was examined under various operating conditions. The effects of heat transfer conditions were studied in order to maximize electric power output. A mathematical model was established and used to look into the influence of heat transfer coefficients and other parameters on electric power output and efficiency.  相似文献   

20.
The current increase of the energy consumption of buildings requires new approaches to solve economic, environmental and regulatory issues. Exergy methods are thermodynamic tools searching for sources of inefficiencies in energy conversion systems that the current energy techniques may not identify. Desiccant cooling systems (DCS) are equipments applied to dehumidifying and cooling air streams, which may provide reductions of primary energy demand relatively to conventional air‐conditioning units. In this study, a detailed thermodynamic analysis of open‐cycle DCS is presented. It aims to assess the overall energy and exergy performance of the plant and identify its most inefficient sub‐components, associated to higher sources of irreversibilities. The main limitations of the energy methods are highlighted, and the opportunities given by exergy approach for improving the system performance are properly identified. As case study, using a pre‐calibrated TRNSYS model, the overall energy and exergy efficiency of the plant were found as 32.2% and 11.8%, respectively, for a summer week in Mediterranean climate. The exergy efficiency defect identified the boiler (69.0%) and the chiller (12.3%) as the most inefficient components of the plant, so their replacement by high efficient systems is the most rational approach for improving its performance. As alternative heating system to the boiler, a set of different technologies and integration of renewables were proposed and evaluated applying the indicators: primary energy ratio (PER) and exergy efficiency. The heating system fuelled by wood was found as having the best primary energy performance (PER = 109.6%), although the related exergy efficiency is only 11.4%. The highest exergy performance option corresponds to heat pump technology with coefficient of performance (COP) = 4, having a PER of 50.6% and exergy efficiency of 28.2%. Additionally, the parametric analyses conducted for different operating conditions indicate that the overall irreversibility rate increases moderately for larger cooling effects and more significant for higher dehumidification rates. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号