首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, we utilize power aggregation operators to develop some Pythagorean fuzzy power aggregation operators: Pythagorean fuzzy power average operator, Pythagorean fuzzy power geometric operator, Pythagorean fuzzy power weighted average operator, Pythagorean fuzzy power weighted geometric operator, Pythagorean fuzzy power ordered weighted average operator, Pythagorean fuzzy power ordered weighted geometric operator, Pythagorean fuzzy power hybrid average operator, and Pythagorean fuzzy power hybrid geometric operator. The prominent characteristic of these proposed operators are studied. Then, we have utilized these operators to develop some approaches to solve the Pythagorean fuzzy multiple attribute decision‐making problems. Finally, a practical example is given to verify the developed approach and to demonstrate its practicality and effectiveness.  相似文献   

2.
《国际智能系统杂志》2018,33(11):2189-2215
Pythagorean fuzzy set (PFS) whose main feature is that the square sum of the membership degree and the non‐membership degree is equal to or less than one, is a powerful tool to express fuzziness and uncertainty. The aim of this paper is to investigate aggregation operators of Pythagorean fuzzy numbers (PFNs) based on Frank t‐conorm and t‐norm. We first extend the Frank t‐conorm and t‐norm to Pythagorean fuzzy environments and develop several new operational laws of PFNs, based on which we propose two new Pythagorean fuzzy aggregation operators, such as Pythagorean fuzzy Choquet–Frank averaging operator (PFCFA) and Pythagorean fuzzy Choquet–Frank geometric operator (PFCFG). Moreover, some desirable properties and special cases of the operators are also investigated and discussed. Then, a novel approach to multi‐attribute decision making (MADM) in Pythagorean fuzzy context is proposed based on these operators. Finally, a practical example is provided to illustrate the validity of the proposed method. The result shows effectiveness and flexible of the new method. A comparative analysis is also presented.  相似文献   

3.
The power average (PA) operator and Maclaurin symmetric mean (MSM) operator are two important tools to handle the multiple attribute group decision‐making (MAGDM) problems, and the combination of two operators can eliminate the influence of unreasonable information from biased decision makers (DMs) and can capture the interrelationship among any number of arguments. The Pythagorean fuzzy linguistic set (PFLS) is parallel to the intuitionistic linguistic set (ILS), which is more powerful to convey the uncertainty and ambiguity of the DMs than ILS. In this paper, we propose some power MSM aggregation operators for Pythagorean fuzzy linguistic information, such as Pythagorean fuzzy linguistic power MSM operator and Pythagorean fuzzy linguistic power weighted MSM (PFLPWMSM) operator. At the same time, we further discuss the properties and special cases of these operators. Then, we propose a new method to solve the MAGDM problems with Pythagorean fuzzy linguistic information based on the PFLPWMSM operator. Finally, some illustrative examples are utilized to show the effectiveness of the proposed method.  相似文献   

4.
The q-rung orthopair fuzzy sets are superior to intuitionistic fuzzy sets or Pythagorean fuzzy sets in expressing fuzzy and uncertain information. In this paper, some partitioned Bonferroni means (BMs) for q-rung orthopair fuzzy values have been developed. First, the q-rung orthopair fuzzy partitioned BM (q-ROFPBM) operator and the q-rung orthopair fuzzy partitioned geometric BM (q-ROFPGBM) operator are developed. Some desirable properties and some special cases of the new aggregation operators have been studied. The q-rung orthopair fuzzy weighted partitioned BM (q-ROFWPBM) operator and the q-rung orthopair fuzzy partitioned geometric weighted BM (q-ROFPGWBM) operator are also developed. Then, a new multiple-attribute decision-making method based on the q-ROFWPBM (q-ROFPGWBM) operator is proposed. Finally, a numerical example of investment company selection problem is given to illustrate feasibility and practical advantages of the new method.  相似文献   

5.
As an extension of fuzzy set, a Pythagorean fuzzy set has recently been developed to model imprecise and ambiguous information in practical group decision‐making problems. The aim of this paper is to introduce a novel aggregation method for the Pythagorean fuzzy set and analyze possibilities for its application in solving multiple attribute decision‐making problems. More specifically, a new Pythagorean fuzzy aggregation operator called the Pythagorean fuzzy induced ordered weighted averaging‐weighted average (PFIOWAWA) operator is developed. This operator inherits main characteristics of both ordered weighted average operator and induced ordered weighted average to aggregate the Pythagorean fuzzy information. Some of main properties and particular cases of the PFIOWAWA operator are studied. A method based on the proposed operator for multiple attribute group decision making is developed. Finally, we present a numerical example of selection of research and development projects to illustrate applicability of the new approach in a multiple attribute group decision‐making problem.  相似文献   

6.
研究了毕达哥拉斯模糊环境下的多属性群决策问题。首先,将毕达哥拉斯模糊信息引入幂平均加权算子,提出毕达哥拉斯模糊幂加权平均(PFPWA) 算子,并研究所提算子的基本性质。然后,在毕达哥拉斯模糊数(PFN) 为信息输入的框架内,提出基于毕达哥拉斯模糊幂加权平均算子的群决策方法。所提出的方法使用毕达哥斯拉信息使得决策者的信息表达更加灵活,并且在信息集结过程中采用幂加权平均算子能够同时考虑专家权威与评估信息的可信度。最后,通过案例分析验证了所提方法的可行性和有效性。  相似文献   

7.
Hamacher product is a t‐norm and Hamacher sum is a t‐conorm. They are good alternatives to algebraic product and algebraic sum, respectively. Nevertheless, it seems that most of the existing hesitant fuzzy aggregation operators are based on the algebraic operations. In this paper, we utilize Hamacher operations to develop some Pythagorean hesitant fuzzy aggregation operators: Pythagorean hesitant fuzzy Hamacher weighted average (PHFHWA) operator, Pythagorean hesitant fuzzy Hamacher weighted geometric (PHFHWG) operator, Pythagorean hesitant fuzzy Hamacher ordered weighted average (PHFHOWA) operator, Pythagorean hesitant fuzzy Hamacher ordered weighted geometric (PHFHOWG) operator, Pythagorean hesitant fuzzy Hamacher induced ordered weighted average (PHFHIOWA) operator, Pythagorean hesitant fuzzy Hamacher induced ordered weighted geometric (PHFHIOWG) operator, Pythagorean hesitant fuzzy Hamacher induced correlated aggregation operators, Pythagorean hesitant fuzzy Hamacher prioritized aggregation operators, and Pythagorean hesitant fuzzy Hamacher power aggregation operators. The special cases of these proposed operators are studied. Then, we have utilized these operators to develop some approaches to solve the Pythagorean hesitant fuzzy multiple attribute decision making problems. Finally, a practical example for green supplier selections in green supply chain management is given to verify the developed approach and to demonstrate its practicality and effectiveness.  相似文献   

8.
结合犹豫模糊集和梯形模糊集,提出犹豫梯形模糊集的概念。首先,给出犹豫梯形模糊数的运算法则,探讨犹豫梯形模糊加权平均(HTrFWA)算子和犹豫梯形模糊加权几何(HTrFWG)算子。考虑到犹豫梯形模糊数的有序位置存在具有不同权重的情况,定义了犹豫梯形模糊有序加权平均(HTrFOWA)算子和犹豫梯形模糊有序加权几何(HTrFOWG)算子,并讨论了其相应的运算定理。其次,构建犹豫梯形模糊数的得分函数,并给出犹豫梯形模糊数的排序方法。最后,提出了基于HTrFWA算子和HTrFWG算子的犹豫梯形模糊多属性决策方法,并通过实例进行验证。  相似文献   

9.
Pythagorean fuzzy sets are powerful techniques for modeling vagueness in practice. The aim of this article is to investigate an effective means to aggregate uncertain information and then employ it into settling multiple criteria decision making (MCDM) problems within the Pythagorean fuzzy circumstances. To capture the nature of the reality, some special cases should be comprehensively considered. First, though correlation commonly exist among criteria, a deep insight should also be provided into some realistic situations, in which not all the criteria are interrelated to others. Besides, it is more reasonable to take the importance of the input arguments into consideration. Effected by aforementioned point, this article explores a Pythagorean fuzzy partitioned normalized weighted Bonferroni mean (PFPNWBM) operator with the combination of partitioned Bonferroni mean (BM) and normalized weighted BM operators considering Shapley fuzzy measure. Subsequently, in the context of partially known weight information, models are established to identify the optimal Shapley fuzzy measure. Moreover, integrated the PFPNWBM operator with the optimal Shapley fuzzy measure identification model, a Pythagorean fuzzy MCDM approach is designed. Finally, an illustrative example and detailed analyses are performed to demonstrate its feasibility and reliability.  相似文献   

10.
The operations of -norm and -conorm, developed by Dombi, were generally known as Dombi operations, which may have a better expression of application if they are presented in a new form of flexibility within the general parameter. In this paper, we use Dombi operations to create a few Pythagorean fuzzy Dombi aggregation operators: Pythagorean fuzzy Dombi weighted average operator, Pythagorean fuzzy Dombi order weighted average operator, Pythagorean fuzzy Dombi hybrid weighted average operator, Pythagorean fuzzy Dombi weighted geometric operator, Pythagorean fuzzy Dombi order weighted geometric operator, and Pythagorean fuzzy Dombi hybrid weighted geometric operator. The distinguished feature of these proposed operators is examined. At that point, we have used these operators to build up a model to remedy the multiple attribute decision-making issues under Pythagorean fuzzy environment. Ultimately, a realistic instance is stated to substantiate the created model and to exhibit its applicability and viability.  相似文献   

11.
The Pythagorean fuzzy set (PFS) is characterized by two functions expressing the degree of membership and the degree of nonmembership, which square sum of them is equal or less than 1. It was proposed as a generalization of a fuzzy set to deal with indeterminate and inconsistent information. In this study, we shall present some novel Dice similarity measures of PFSs and the generalized Dice similarity measures of PFSs and indicates that the Dice similarity measures and asymmetric measures (projection measures) are the special cases of the generalized Dice similarity measures in some parameter values. Then, we propose the generalized Dice similarity measures-based multiple attribute group decision-making models with Pythagorean fuzzy information. Then, we apply the generalized Dice similarity measures between PFSs to multiple attribute group decision making. Finally, an illustrative example is given to demonstrate the efficiency of the similarity measures for selecting the desirable ERP system.  相似文献   

12.
The generalized Heronian mean and geometric Heronian mean operators provide two aggregation operators that consider the interdependent phenomena among the aggregated arguments. In this paper, the generalized Heronian mean operator and geometric Heronian mean operator under the q‐rung orthopair fuzzy sets is studied. First, the q‐rung orthopair fuzzy generalized Heronian mean (q‐ROFGHM) operator, q‐rung orthopair fuzzy geometric Heronian mean (q‐ROFGHM) operator, q‐rung orthopair fuzzy generalized weighted Heronian mean (q‐ROFGWHM) operator, and q‐rung orthopair fuzzy weighted geometric Heronian mean (q‐ROFWGHM) operator are proposed, and some of their desirable properties are investigated in detail. Furthermore, we extend these operators to q‐rung orthopair 2‐tuple linguistic sets (q‐RO2TLSs). Then, an approach to multiple attribute decision making based on q‐ROFGWHM (q‐ROFWGHM) operator is proposed. Finally, a practical example for enterprise resource planning system selection is given to verify the developed approach and to demonstrate its practicality and effectiveness.  相似文献   

13.
针对毕达哥拉斯模糊环境下的多属性决策问题中的信息集成问题,其中方案的属性间相互关联相互影响,提出了一种毕达哥拉斯模糊Heronian算子的多属性决策方法。首先将毕达哥拉斯模糊数与Heronian算子相结合,提出了毕达哥拉斯模糊Heronian算子和毕达哥拉斯模糊加权Heronian算子,并讨论了这些算子的性质,给出了相应的证明。在此基础上,提出了基于毕达哥拉斯模糊Heronian算子的多属性决策方法;最后将其应用到国内四家航空公司服务质量评价中,说明了该算子的有效性和可行性。  相似文献   

14.
结合幂平均与Bonferroni平均集成算子的优点,定义了毕达哥拉斯模糊幂Bonferroni平均和毕达哥拉斯模糊加权幂Bonferroni平均集成算子,其不仅考虑了数据信息之间的整体均衡性,还考虑了属性之间可能存在的相互关联关系。研究了这些集成算子的优良性质和特殊情形,并在此基础上提出了一种属性间存在相关性的毕达哥拉斯模糊多属性决策方法。将其应用于国内航空公司的服务质量评价中,并与现有方法进行分析比较,验证了所提方法的有效性和可行性。  相似文献   

15.
In this paper, we investigate multiple attribute decision making (MADM) problems based on Frank triangular norms, in which the attribute values assume the form of hesitant fuzzy information. Firstly, some basic concepts of hesitant fuzzy set (HFS) and the Frank triangle norms are introduced. We develop some hesitant fuzzy aggregation operators based on Frank operations, such as hesitant fuzzy Frank weighted average (HFFWA) operator, hesitant fuzzy Frank ordered weighted averaging (HFFOWA) operator, hesitant fuzzy Frank hybrid averaging (HFFHA) operator, hesitant fuzzy Frank weighted geometric (HFFWG) operator, hesitant fuzzy Frank ordered weighted geometric (HFFOWG) operator, and hesitant fuzzy Frank hybrid geometric (HFFHG) operator. Some essential properties together with their special cases are discussed in detail. Next, a procedure of multiple attribute decision making based on the HFFHWA (or HFFHWG) operator is presented under hesitant fuzzy environment. Finally, a practical example that concerns the human resource selection is provided to illustrate the decision steps of the proposed method. The result demonstrates the practicality and effectiveness of the new method. A comparative analysis is also presented.  相似文献   

16.
In this paper, we study the well‐known Bonferroni mean and develop its generalized aggregation operators in the Pythagorean fuzzy environment. More specifically, by considering the interrelationship between arguments with Pythagorean fuzzy information, we develop the Pythagorean fuzzy Bonferroni mean (PFBM) and some special properties and cases of them are also discussed. Furthermore, taking the multicriteria decision making environment into consideration, we extend the results of PFBM and develop the weighted Pythagorean fuzzy Bonferroni mean (WPFBM). Meanwhile, we also propose an approach for the application of WPFBM. However, during the application of the WPFBM operator, the calculation is very complex and time consuming. Hence, we introduce the multithreading into the application of the WPFBM operator and develop an accelerative calculating algorithm for it. To validate the performance of the accelerative calculating algorithm, we further design the corresponding experimental analysis.  相似文献   

17.
彭定洪  杨扬 《计算机应用》2019,39(2):316-322
针对毕达哥拉斯模糊环境下的多属性决策问题,提出一种基于毕达哥拉斯模糊Frank算子的多属性决策方法。首先将毕达哥拉斯模糊数和Frank算子相结合,给出了基于Frank算子的运算法则;然后提出了毕达哥拉斯模糊Frank算子,包括毕达哥拉斯模糊Frank加权平均算子和毕达哥拉斯模糊Frank加权几何算子,并讨论了这些算子的性质;最后提出了基于毕达哥拉斯模糊Frank算子的多属性决策方法,将该方法应用于绿色供应商的选择中。实例分析表明,运用该方法可以解决实际的多属性决策问题,并可以进一步应用到风险管理、人工智能等领域。  相似文献   

18.
In this paper, according to the Maclaurin symmetric mean (MSM) operator, the dual MSM (DMSM) operator and the q-rung interval-valued orthopair fuzzy set (q-RIVOFS), we develop some novel MSM operators under the q-rung interval-valued orthopair fuzzy environment, such as, the q-rung interval-valued orthopair fuzzy MSM operator, the q-rung interval-valued orthopair fuzzy weighted MSM (q-RIVOFWMSM) operator, the q-rung interval-valued orthopair fuzzy DMSM operator, and the q-rung interval-valued orthopair fuzzy weighted DMSM operator. In addition, some precious properties and numerical examples of these new operators are given in detail. These new operators have the advantages of considering the interrelationship of arguments and can deal with multiple attribute group decision-making problems with q-rung interval-valued orthopair fuzzy information. Finally, a reality example for green suppliers selection in green supply chain management is provided to demonstrate the proposed approach and to verify its rationality and scientific.  相似文献   

19.
Pythagorean fuzzy set (PFS) is a powerful tool to deal with the imprecision and vagueness. Many aggregation operators have been proposed by many researchers based on PFSs. But the existing methods are under the hypothesis that the decision-makers (DMs) and the attributes are at the same priority level. However, in real group decision-making problems, the attribute and DMs may have different priority level. Therefore, in this paper, we introduce multiattribute group decision-making (MAGDM) based on PFSs where there exists a prioritization relationship over the attributes and DMs. First we develop Pythagorean fuzzy Einstein prioritized weighted average operator and Pythagorean fuzzy Einstein prioritized weighted geometric operator. We study some of its desirable properties such as idempotency, boundary, and monotonicity in detail. Moreover we propose a MAGDM approach based on the developed operators under Pythagorean fuzzy environment. Finally, an illustrative example is provided to illustrate the practicality of the proposed approach.  相似文献   

20.
In this article, we define two new exponential operational laws about the interval‐valued Pythagorean fuzzy set (IVPFS) and their corresponding aggregation operators. However, the exponential parameters (weights) of all the existing operational laws of IVPFSs are crisp values in IVPFS decision‐making problems. As a supplement, this paper first introduces new exponential operational laws of IVPFS, where bases are crisp values or interval numbers and exponents are interval‐valued Pythagorean fuzzy numbers. The prominent characteristic of these proposed operations is studied. Based on these laws, we develop some new weighted aggregation operators, namely the interval‐valued Pythagorean fuzzy weighted exponential averaging operator and the dual interval‐valued Pythagorean fuzzy weighted exponential averaging. Finally, a decision‐making approach is presented based on these operators and illustrated with some numerical examples to validate the developed approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号