首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
This paper has analyzed the longitudinal ventilation on the effect of the efficiency of the smoke evolution mechanism in a metro tunnel of multi-window carriage fires. These were simulated by Large Eddy Simulation (LES) with Fire Dynamics Simulator (FDS). In the past, analyses of smoke temperature under the tunnel ceiling and smoke overflow characteristics have been conducted. However, longitudinal ventilation has a different impact on temperature than natural ventilation, especially in a subway tunnel with a multi-door carriage fire. Consequently, several simulations were run in a subway tunnel (360-m long, 6.0-m wide, and 4.8-m high). The longitudinal ventilation velocity is set by 0–10 m/s with the heat release rate of 1–10 MW. The results show that there is a linear relationship between the maximum temperature and the longitudinal ventilation velocity. An empirical model considering various longitudinal ventilation velocities was developed to predict the maximum smoke temperature underneath the subway tunnel ceiling. The effects of the longitudinal ventilation velocity, the heat release rate, and the distance of the fire source on the characteristics of longitudinal temperature distribution were analyzed. What's more, smoke overflow characteristics under different longitudinal ventilation velocities have been described. The findings and results can also provide a reference for the fire risk assessment of a metro tunnel of multi-window carriage fires.  相似文献   

2.
The critical ventilation velocity is almost the most well‐investigated fire phenomenon in the tunnel fire research field whereas previous studies have always investigated it when the fire source is distant from the downstream tunnel exit. Fortunately, a recent study provided a set of data on the critical ventilation velocity for tunnel fires occurring near tunnel exits by small‐scaled experiments, nevertheless, with a lack of further analysis. To demonstrate the relationship of the critical ventilation velocity and the distance between the fire and tunnel exit more explicitly and detailedly, a quantitative and graphical study was carried out and a correlation was presented in this paper. Inspired by this, a set of small‐scaled experiments were carried out to investigate the influence of different longitudinal fire locations on maximum smoke temperature under the tunnel ceiling. Results show that unlike the critical ventilation velocity, the maximum smoke temperature was not obviously affected by longitudinal fire location. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
To address the effect of metro train blockage on the critical ventilation velocity in a long tunnel, a series of scenarios were conducted numerically through this study, including different fire sizes (5-10 MW), metro train lengths (80-120 m), and blockage ratios (φ, 0.50, and 0.57). It is known from the numerical results that the metro train length shows a limited effect on the critical ventilation velocity, which is because the longitudinal ventilation has become stable before reaching the fire source to prevent smoke back-layering, and increasing the metro train length only increases the distance of stabilizing the longitudinal ventilation. The blockage ratio shows an obvious influence on the critical ventilation velocity, which is because the presence of the metro train can obviously reduce the flow cross-sectional area of the tunnel. An empirical model is developed as well, while it is known that the critical ventilation velocity increases with the one-third power of dimensionless heat release rate and (1-φ). The research outcomes of this study provide a technical guide for the design of the metro tunnel and the relevant emergency management of fire rescue under fire conditions.  相似文献   

4.
In more and more tunnels, natural ventilation mode with vertical shafts has been gradually employed. However, there are few studies investigating the influences of fire and shaft positions on natural ventilation performance currently. Therefore, this study investigated the effects of the transverse distance from fire source to tunnel sidewall, the longitudinal distance from fire source to shaft, and the transverse distance from shaft to sidewall on natural ventilation effectiveness in a tunnel fire by using Fire Dynamics Simulator. The typical characteristic parameters of smoke, such as mass flow rate, temperature distribution, and velocity vector were analyzed; besides, the phenomenon of plug‐holing was discussed. The results have shown that the mass flow rate of gas exhausted by the shaft decreases slightly with the increase of longitudinal distance from fire source to shaft. When the longitudinal distance from fire source to shaft is constant, changing the transverse distance from shaft to sidewall will have a more obvious effect on the effectiveness of exhausting smoke than changing the transverse distance from fire source to sidewall; in addition, the phenomenon of plug‐holing is more serious when the shaft is close to the sidewall.  相似文献   

5.
Yan Wang  Fan Wu  Peihong Wu 《火与材料》2020,44(2):283-295
This paper investigates the effects of passenger blockage on smoke flow properties in longitudinally ventilated tunnel fires. A series of numerical simulations were conducted in a 1/5 small-scale tunnel with the different heat release rates (50-100 kW), longitudinal ventilation velocities (0.5-1 m/s), passenger blockage lengths (2-6 m), and ratios (0.17-0.267). The typical smoke flow properties in different tunnel fire scenarios are analyzed, and the results show that under the same heat release rate and longitudinal ventilation velocity, the smoke back-layering length, maximum smoke temperature, and downstream smoke layer height decrease with increasing passenger blockage length or ratio. The Li correlations can well predict the smoke back-layering length and maximum smoke temperature in tunnel fire scenarios without the passenger blockage. When the passenger blockage exists, the modified local ventilation velocity that takes the blockage length and ratio into account has been proposed to correct the Li correlations. The smoke back-layering length and maximum smoke temperature with the different blockage lengths and ratios can be predicted by the modified correlations, which are shown to well reproduce the simulation results.  相似文献   

6.
Understanding smoke temperature distributions and transport characteristics is of great importance to control and exhaust thermal-driven smoke. However, previous studies have focused on this problem in plain areas, whereas ambient pressure decreases as elevation increases. This study investigates the influence of ambient pressure on the hot gas temperature distribution and movement characteristics in a tunnel fire. A series of numerical simulations are carried out in a vehicle tunnel with various heat release rates (HRRs) and ambient pressures. The results show that the maximum temperature and longitudinal temperature distribution under the tunnel ceiling increase with decreasing ambient pressure due to less heat loss caused by lower air density. In addition, the vertical temperatures of the smoke are slightly higher under lower ambient pressure, and this phenomenon makes the smoke spread slightly faster while the smoke layer thickness remains nearly the same under different ambient pressures. The results can provide a reference for tunnel lining design and ventilation arrangements in high-altitude areas.  相似文献   

7.
Fei Tang  Yuantao Zhu  Lei Chen 《火与材料》2020,44(7):1004-1012
Smoke is the main cause of death in tunnel fires. It is one of the important measures to maintain smoke stratification in the early stage of tunnel fire. This article focused on experimentally studying the combined effect of lateral concentrated smoke extraction and longitudinal ventilation on the smoke stratification, which never be revealed before. The velocity of the smoke layer and air layer, vertical temperature distribution, and the flow patterns of the smoke were measured. It was found that the longitudinal ventilation and lateral concentrated smoke extraction would affect the flow of the smoke and change the shear velocity between the smoke layer and air layer, then, the patterns of the smoke layer will be affected. And the flow patterns with Froude (Fr) number can be classified into three categories: (a)Fr < 0.6 , with stable smoke stratification; (b) 0.6 < Fr < 0.85 , with a stable smoke stratification but the blurring interface; and (c) Fr > 0.85 , the smoke layer is completely unstable. The result can provide a reference for ventilation design of immersed tube tunnels.  相似文献   

8.
The impingement of turbulent fires and fire plumes on a horizontal ceiling was considered. Free flame heights, impinging flame lengths along the ceiling and ceiling heat fluxes were measured for both unconfined and confined ceilings. The study was limited to the initial stage of ceiling heating by fire under conditions where convection dominates the flow. Fire sources were simulated by burning liquid methanol, ethanol, 1-propanol or n-pentane from the top surface of a cylindrical wick. Test variables include fire heat release rate of 50–7890 W, ceiling diameters of 610 and 660 mm, ceiling heights of 58–940 mm, wick diameters of 10–107 mm and curtain wall lengths (for confined ceilings) as large as the ceiling height. Simplified models were employed to suggest expressions for data correlation. Flame lengths increased up to 40% when the ceiling was confined. Ceiling heat fluxes were relatively independent of position in the stagnation region (radius along ceiling <20% of the ceiling height). Heat fluxes in the stagnation region for plumes were 25–40% of those measured for impinging jets at comparable conditions. In the ceiling jet region, at larger distances from the point of impingement, the heat flux decreased with increasing radius, in agreement with other studies. Confinement tended to increase ceiling heat fluxes in both regions. Ceiling heat fluxes for impinging flames and plumes were approximately the same, for flame lengths along the ceiling up to 25% of the ceiling height; however, stagnation point heat fluxes decreased for longer flame lengths.  相似文献   

9.
A series of numerical simulations were conducted in order to investigate the characteristics of smoke back‐layering and critical ventilation in the road tunnel at high altitude with reduced ambient atmospheric pressures. The results indicated that the smoke back‐layering length decreases with the reduction of ambient pressure. Meanwhile, the dimensionless critical longitudinal ventilation velocity decreases with one‐third power of the factor of ambient pressure at high altitude. By modifying the traditional dimensionless fire heat release rate with ambient pressure, new models were deduced to predict the smoke back‐layering length and critical ventilation velocity in the road tunnel at high altitude.  相似文献   

10.
The combustion characteristics of methanol‐gasoline blends pool fires were studied in a series of full‐scale tunnel experiments conducted with different methanol and gasoline blends. The parameters were measured including the mass loss rate, the pool surface temperature, the fire plume centerline temperature, the ceiling temperature, the smoke layer temperature profile, the flame height, and the smoke layer interface height. The gasoline components were analyzed by GC‐MS. The effects of azeotropism on the combustion characteristics of the different blends were discussed. On the basis of the results of the fire plume centerline temperature, the ceiling temperature, and the flame height, it shows that the tunnel fire regime gradually switches from fuel controlled to ventilation controlled with increasing gasoline fractions in the blends. The fire plume can be divided into 3 regions by the fire plume centerline temperature for the different blends. The N‐percentage rule to determine the smoke layer interface height is found to be applicable for tunnel fires with different blends for N = 26.  相似文献   

11.
This study investigated the influence of the longitudinal airflow on the smoke propagation in a tunnel by large-eddy simulation, which is now widely applied to study the turbulent flow. The smoke movement characteristics were studied in detail, with varying the longitudinal airflow in the tunnel. Six fire scenarios have been simulated with Fire Dynamics Simulator (FDS) and the results of the longitudinal distribution of CO concentration, temperature distribution, interface height, stratification, and the efficiency of smoke extraction in the tunnel have been analyzed to evaluate the different fire cases. FDS predicted a CO concentration distribution compared to calculated values using the Hu model. Furthermore, the predicted maximum smoke temperatures are compared to those given by the Kurioka model. A reasonably good agreement has been obtained for both models. The obtained results showed that the increase of the forced airflow velocity has for results a loss of stratification and significant decrease in the efficiency of extraction.  相似文献   

12.
This study investigated the efficacy of the full transverse exhaust method for smoke extraction in tunnel fires. It examines factors such as the number and layout of air supply and exhaust outlets, analyzing their impact on smoke spread, tunnel temperature, visibility, and airflow. The results demonstrate that the full transverse exhaust method effectively controls smoke emissions in raised highway tunnels. It limits smoke spread, reduces tunnel temperature, and effectively controls the fire-affected area. The number and layout of outlets significantly influence smoke dispersion, with fewer exhaust outlets providing better smoke control and optimizing the tunnel environment. However, insufficient outlets disrupt gas flow stability. The position of exhaust outlets affects smoke distribution, and caution is advised to prevent directing fresh air flow toward the fire. Opening an equal number of exhaust outlets on one side of the fire source yields superior smoke extraction results, reducing tunnel ceiling temperatures and minimizing risks to personnel and structures. Though stabilization may take longer, this configuration proves advantageous. The study offers valuable insights and practical guidelines for implementing the full transverse smoke control method in real-world scenarios.  相似文献   

13.
Flat mounted microelectrodes, for which the longitudinal length,L, is small in comparison with the diffusion entrance region are used to measure wall shear stress fluctuations. However, microelectrode turbulent noise depends both on wall shear stress fluctuations (i.e. longitudinal velocity pulsations) and on normal pressure gradient fluctuations (i.e. normal velocity pulsations). The relative value of these two factors depends on the microelectrode length. The influence of normal and longitudinal velocity pulsations on the microelectrode turbulent noise are the same order of magnitude if the lengthL is approximately 10 or 20 times the thickness of the viscous sublayer. Consequently it is possible to determine statistical characteristics of normal and longitudinal velocity fluctuations by using a number of microelectrodes of different lengths in the flow direction.This paper was presented at the Workshop on Electrodiffusion Flow Diagnostics, CHISA, Prague, August 1990.  相似文献   

14.
The heat exhaust coefficient and smoke flow characteristics under lateral smoke exhaust in tunnel fires were studied in this paper. Through the dimensional analysis, the dimensionless relationship between the heat exhaust coefficient, heat release rate, exhaust vent size, and exhaust velocity was obtained. In addition, this paper also studied the effect of the lateral exhaust vent on the smoke flow field. Results showed that the lateral smoke exhaust caused strong air entrainment on the downstream of the exhaust vent and boundary layer separation on the upstream of the exhaust vent. As the exhaust velocity increased, the degree of air entrainment gradually increased, and the smoke layer near the exhaust vent gradually became thinning and plug‐holing phenomenon occurred; meanwhile, the boundary layer separation would be suppressed or disappear, but the increase of the heat release rate would enhance the boundary layer separation. As the exhaust vent got narrower, the air entrainment downstream of the exhaust vent was reduced, and the boundary layer separation also got weaker.  相似文献   

15.
The combustion characteristics of multisource fire and single-source fire are quite different, and there is little research on the influence of multisource fire on the natural smoke extraction effect of shaft in urban tunnels. Therefore, in this article, the method of numerical simulation was used to study the influence of fire power and distance between two fire sources on the natural smoke extraction effect of shaft and the temperature distribution in tunnel in the case of multisource fire. Typical characteristics of smoke are analyzed, such as mass flow rate, temperature distribution, velocity vector, and CO concentration. The simulation results show that when there is a certain distance between the fire sources, the two flames are inclined and close to each other. The smoke temperature under the ceiling is higher under multiple fire sources than that under single fire source. In addition, when one of the fire sources is located at the downstream of the shaft, the smoke emission in the shaft is relatively high. As the distance between fire sources continues to increase, the smoke exhaust rate basically remains stable, and an empirical relationship between smoke exhaust rate and fire source location is established.  相似文献   

16.
In coal mining, smoke flow from tunnel fires can easily cause a large number of deaths in the ventilation network. But the optimal smoke flow path control methods and automatic control system were lacked. In order to improve the efficiency of fire emergency rescue, the control mechanism and regional linkage control system for fire induced smoke flow in ventilation network was studied. Based on a ventilation system in coal mines, different fire scenarios for smoke flow were analysed using ventilation simulation software (VSS). Smoke flow control methods were simulated under different ventilation modes, a contrastive analysis was conducted for the respective effects and the optimal smoke flow path control methods were confirmed in different fire scenarios. A new type of ventilation facility, regional monitoring sub-stations and remote linkage control platforms were developed for smoke control. A reliability evaluation model for the control system was established by Bayesian network. The failure of the linkage control is 98.9%, the monitoring sub-station is 64.4%, the sub-station communication is 43.9%; thus, a double insurance of the control process must be realised. Since its application, the proposed regional linkage control system has been repeatedly tested through fire drills, and good results have been obtained.  相似文献   

17.
In a longitudinally ventilated tunnel fire, the backlayering flow propagated in the opposite direction to the air current is the most fatal contaminations to users which are blocked upstream of the fire. In the present paper, numerical simulations were conducted using Fire Dynamic Simulator, which is based on large eddy simulations to estimate the backlayering arrival time in a longitudinally ventilated tunnel fire. The effect of a vehicle obstruction on the backlayering arrival time will be also investigated. For this, a vehicle model occupying about 31% of the tunnel cross section is simulated upstream of the fire source with its location relative to the tunnel floor is varied. The numerical investigation shows that the inertia and the buoyancy forces produced by ventilation and fire, respectively, affect the backlayering spread. The backlayering arrival time increases with the longitudinal ventilation velocity while it decreases with the fire heat release rate. When a vehicle obstruction existed within the tunnel, the numerical results show an increase of backlayering arrival time. This increase is significantly more important with the fire distance when the vehicle obstruction approaches the tunnel floor. Two correlations are developed, with and without obstruction in the tunnel, to predict the backlayering arrival time against the distance to fire. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
To investigate the blockage characteristics for dense-phase pneumatic conveying in narrow bifurcation slits, a study on the blockage boundary conditions of powders was undertaken. The results show that the solid mass flow rate for blockage increases with superficial air velocity, and the variation trend can be divided into three typical stages. Besides the relationship between the solid loading ratio and superficial air velocity for blockage in the bifurcation slit displays a “S” shape with the increase of air velocity, the solid loading ratio increases, then decreases, finally increases, and in each stage above, the relationship between the two approximately meets power function, respectively. According to the “S” shape relationship, the formula used for blockage boundary [Setia, Mallick, Wypych, and Pan (2013). Validated scale-up procedure to predict blockage condition for fluidized dense-phase pneumatic conveying systems, Particuology, 11, 657–663] was modified into piecewise function for bifurcation slits. In addition, with the increase of the bifurcation angle and conveying pressure, the superficial air velocity decreases, while the solid mass flow rate and the critical solid loading ratio increase. The research work could help understand the blockage theory of the dense-phase pneumatic conveying.  相似文献   

19.
Based on large eddy simulation, a series of long tunnel fire experiments with different heat release rates (HRRs) and altitudes were carried out. The vertical temperature and thickness of fire smoke are studied. The simulation results show that the higher the altitude, the lower the flame temperature rise, while the change of smoke plume temperature rise is opposite. The movement of smoke in the tunnel can be divided into four regions, and the smoke layer thickness in the longitudinal direction of the tunnel corresponds to the latter three regions. The thickness in Region II increases along the longitudinal direction, the thickness in Region III is a constant value, and the thickness in Region IV increases along the longitudinal direction. Besides, the change of altitude only has an effect on the smoke layer thickness in Region IV. Then, by considering the altitude, HRR, and smoke layer thickness, and using dimensional analysis, an empirical formula for predicting the smoke layer thickness under the influence of altitude in Region IV was established.  相似文献   

20.
Experimental measurements of velocity and concentration profiles were carried out to study transport of non‐colloidal suspension in bifurcating micro channels for both diverging and converging flow conditions using a combination of mirco‐particle image velocimetry and particle tracking velocimetry techniques. Migration of particles across the streamline was observed and symmetric velocity and concentration profile in the inlet branch becomes asymmetric in the daughter branches. Further migration of particles toward the center of the channel in the outlet branch make the profiles again symmetric. The evolution of velocity and concentration profiles was observed to be different in the symmetric and asymmetric bifurcation channels. The comparison of the streamlines for the fluid and the particles showed significant deviation near the bifurcation region. This may explain why there is unequal flow and particle partitioning during flow of suspension in asymmetric bifurcating channels as reported in many previous studies. © 2018 American Institute of Chemical Engineers AIChE J, 64: 2293–2307, 2018  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号