首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Journal of power sources》2006,162(2):829-836
A fuzzy logic-based state-of-charge meter is being developed for Li-ion batteries for potential use in portable defibrillators. ac impedance and voltage recovery measurements have been made which are used as the input parameters for the fuzzy logic model. The load profile for the Li-ion battery packs comprises a continuous 1.4 A constant current discharge periodically interrupted by 10 A pulses. As the battery is cycled the available capacity diminishes and so the number of 10 A pulses that may be delivered decreases. Measurements are being made on a total of three battery packs at three different temperatures (0, 20 and 40 °C) and as expected the number of pulses deliverable by the battery pack diminishes as temperature is decreased. For example, at room temperature the battery pack was initially able to deliver 42 pulses early in the cycle life whereas at 0 °C the battery-pack is only able to initially deliver 12 pulses.The voltage recovery profile upon removal of the 10 A load has been used both in the time domain and frequency domain to develop fuzzy logic models to estimate the number of remaining pulses that the battery-pack can deliver. Accurate models are being developed to estimate the number of pulses that the battery pack can deliver at various stages of its cycle life and at the different temperatures. With sufficient data collected for the battery packs at room temperature accurate fuzzy logic models have been developed for estimation of state-of-charge and implemented in the Motorola MC 68HC12 microcontroller.  相似文献   

2.
Aiming at solving the problem of poor battery cell consistency caused by excessive decay of cell capacity or increased internal resistance during the operation of lithium-ion battery packs for vehicles, the paper proposes an active equalization control with 12-V power supply as an equalization energy source, which achieves efficient energy replenishment of individual cells with low power. The electrochemical-thermal coupling model of lithium-ion battery is built, and the order reduction of large-scale system theory ensures that the model had higher accuracy and lower amount of calculation, which is suitable for vehicle battery management system (BMS). Then the extended Kalman filter algorithm is used to calculate the real-time state of charge (SOC) of each cell and set as an equalization variable. The equalization simulation circuit is built with MATLAB/Simulink, the experimental platform of active equalization system for battery packs is constructed, and the battery packs are tested for equalization in static state. The simulation and experimental results show that the proposed active equalization control strategy can rapidly improve the voltage inconsistency between single cells, and the energy transfer efficiency can reach about 85% during the equalization process.  相似文献   

3.
Li‐ion cells are used for energy storage and conversion in electric vehicles and a variety of consumer devices such as hoverboards. Performance and safety of such devices are severely affected by overheating of Li‐ion cells in aggressive operating conditions. Multiple recent fires and accidents in hoverboards are known to have originated in the battery pack of the hoverboard. While thermal analysis and measurements have been carried out extensively on large battery packs for electric vehicles, there is relatively lesser research on smaller devices such as hoverboards, where the extremely limited thermal management design space and the critical importance of user safety result in severe thermal management challenges. This paper presents experimental measurements and numerical analysis of a novel approach for thermal management of the battery pack of a hoverboard. Measurements indicate that temperature rise in cells in the pack can be as large as 30°C at 4C discharge rate, which, although unlikely to be a standard discharge rate, may result from a malfunction or accident. A novel thermal management approach is investigated, wherein careful utilization of air flow generated by hoverboard motion is shown to result in significant temperature reduction. Measurements also indicate the key role of the metal housing around the battery pack in thermal management. Measurements are found to be in good agreement with finite element simulations, which indicate that the battery pack can be cooled as effectively in presence of a perforated metal casing as without the casing at all. Experimental data and simulation model presented here offer critical insights into the design of hoverboard thermal management and may result in safer, high performance hoverboard battery packs.  相似文献   

4.
A battery pack is the main energy storage element, and directly affects the performance of an electric vehicle. Battery thermal management system research and its development for a modern electric vehicle is required. This paper selects the forced air cooling of battery pack as the research object, and uses simulation methods to research the heat dissipation performance with different structures of battery packs. The results indicate that according to the four types of transient state conditions, the rising temperature of both battery packs are significantly higher than the temperature difference, the maximum temperature rise and temperature difference of a horizontal battery pack are lower than a longitudinal battery pack. When an electric vehicle begins to decrease speed, the curves of temperature rising and temperature difference increase. This shows the internal heat is continuously rising, so even in a electric vehicle beginning to decrease speed, the fan must work. The reference basis for choosing battery pack type and an analysis of heat flow field characteristics, including fan run‐time control, are offered.  相似文献   

5.
Thermal issues associated with electric vehicle battery packs can significantly affect performance and life cycle. Fundamental heat transfer principles and performance characteristics of commercial lithium‐ion battery are used to predict the temperature distributions in a typical battery pack under a range of discharge conditions. Various cooling strategies are implemented to examine the relationship between battery thermal behavior and design parameters. By studying the effect of cooling conditions and pack configuration on battery temperature, information is obtained as to how to maintain operating temperature by designing proper battery configuration and choosing proper cooling systems. It was found that a cooling strategy based on distributed forced convection is an efficient, cost‐effective method which can provide uniform temperature and voltage distributions within the battery pack at various discharge rates. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Capacity inconsistency among cells is a serious problem in battery energy storage systems. The inconsistency reduces battery pack lifetimes and increases their usage costs. Active balancing is an effective technique for performance equalization between cells. Here, a quantitative analysis method based on an active balancing circuit is developed to explain how battery capacity inconsistency is affected by balancing parameters. Four balancing parameters, namely, charge/discharge current rate, initial capacity difference before balancing, balancing current, and balancing time, have been considered to explain the effects on battery capacity consistency. The results indicate that (1) the inconsistency of batteries can be reduced more effectively for discharging with active balancing at small current rates; (2) for an improved balancing effect, it is necessary to maintain a high ratio (β) of balancing current to charging/discharging current during the balancing process; thus, a larger balancing current is significant; (3) the value of capacity difference reduction ratio (α) grows more dramatically in discharging at large initial battery capacity differences; and (4) when the balancing current only marginally changes, following the increase of current rate, the ratio (γ) of balancing time to charging duration decreases and the balancing effect becomes inconspicuous in charging, while γ increases and the balancing effect reduces in discharging. These influence regulations can help us make and optimize balancing control strategies for LiFePO4 batteries. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
In order to meet the required power and energy demand of battery-powered applications, battery packs are constructed from a multitude of battery cells. For safety and control purposes, an accurate estimate of the temperature of each battery cell is of vital importance. Using electrochemical impedance spectroscopy (EIS), the battery temperature can be inferred from the impedance. However, performing EIS measurements simultaneously at the same frequency on each cell in a battery pack introduces crosstalk interference in surrounding cells, which may cause EIS measurements in battery packs to be inaccurate. Also, currents flowing through the pack interfere with impedance measurements on the cell level. In this paper, we propose, analyse, and validate a method for estimating the battery temperature in a battery pack in the presence of these disturbances. First, we extend an existing and effective estimation framework for impedance-based temperature estimation towards estimating the temperature of each cell in a pack in the presence of crosstalk and (dis)charge currents. Second, the proposed method is analysed and validated on a two-cell battery pack, which is the first step towards development of this method for a full-size battery pack. Monte Carlo simulations are used to find suitable measurement settings that yield small estimation errors and it is demonstrated experimentally that, over a range of temperatures, the method yields an accuracy of ±1°C in terms of bias, in the presence of both disturbances.  相似文献   

8.
The fading characteristics of 60 Ah decommissioned electric vehicle battery modules were assessed employing capacity calibration, electrochemical impedance spectroscopy, and voltage measurement of parallel bricks inside modules. The correlation between capacity and internal resistance or voltage was analyzed. Then, 10 consistent retired modules were packed and configured in a photovoltaic (PV) power station to verify the practicability of their photovoltaic energy storage application. The results show that the capacity attenuation of most retired modules is not severe in a pack while minor modules with state of health (SOH) less than 80% bring about the retirement of the whole pack as a result of the buckets effect. There is no obvious correlation between capacities of retired battery modules and their lithium-ion diffusion coefficients or charge transfer resistance or ohmic resistance, whose reliability is low as the consistency indexes of decommissioning battery modules. The maximum off load voltage difference ΔUmax at low state of charge (SOC) values has a good negative linear correlation with the capacity of retired modules, suggesting that the ΔUmax value at low SOC values can be considered as a characteristic index for fast classification of retired battery modules for large-scale second-life application. A PV power station equipped with retired battery energy storage system (RBESS) can maximize the photovoltaic self-utilization rate. It is an important way to reutilization of retired battery that RBESSs are configured with distributed PV power stations.  相似文献   

9.
近年来,锂离子电池在储能电站调频领域得到了飞速发展。为满足调频电站的电压和功率要求,需将大量电池单体进行串联,如此产生的电池组串联不一致性问题,以及调频过程中高倍率和频繁切换充放电状态对不一致性程度的加剧,严重影响电池组的使用寿命和安全性能。针对上述问题,本文基于调频储能串联锂离子电池模组不一致性问题的形成原因,归纳分析用于改善电池组串联不一致性问题的均衡技术和均衡策略。其中,均衡拓扑结构按能量流向角度进行分类梳理,均衡控制策略则基于均衡的不同目标进行优劣分析。在此基础上对锂离子调频电池模组均衡技术的发展趋势进行展望。  相似文献   

10.
Lithium-ion batteries play an important role in large-scale energy storage systems. However, the power inconsistency of the battery packs restricts the developments of modern technologies in energy storage area. The motivation of the present study is to serve the growing needs of the energy balance for lithium-ion battery packs. The present study proposes a flexible multiphase interleaved converter for the energy equalization of a lithium battery pack with series configuration. Moreover, the graph theory is applied to the analysis of equalization circuits. It is intended to establish a unified standard for the comparison. The parameter of average efficiency is considered as an important indicator to evaluate the performance of the equilibrium system. This mentioned method is verified by constructing a lithium-ion battery pack with the equalization circuit. It is observed that the proposed multiphase interleaved converter has flexible characteristics, while it has low energy loss compared with the conventional methods. The proposed method simplifies the complex equalization circuits into graphs and facilitates the comparison of the average efficiency of the system. It is concluded that this method is a feasible and powerful for evaluating the battery equalization circuit. This approach can be applied for solving complex problems in other engineering applications.  相似文献   

11.
本项目选用了两种不同的电池管理模式对磷酸铁锂电池组进行管理,并将组装好的两套电池组应用于110 kV变电站直流系统的日常运行.运行结果表明,磷酸铁锂电池可以在变电站替代铅酸蓄电池使用,并且可以浮充运行;运行过程中,单体电池的电压会由于电池充电态的变化下降或上升;单体电池的内阻呈现先下降再上升的变化;电池组的放电容量随着运行时间的延长出现每年3%左右的衰减(浮充电压为3.6 V);合适的电池管理模式能将电池组内单体电池的电压差保持在较小的范围,有利于电池组长寿命的运行.  相似文献   

12.
This work establishes an improved electrothermal-coupled model for the estimation of the temperature evolution in an air-cooled pack with three parallel branches and four serial cells in each branch. This model includes the influences of the cells' state of charge (SOC) and temperature on the ohmic and polarization resistances and polarization capacitance. The current distribution in the pack is considered in the model and applied to predicting the inconsistent effect of cell temperature. Moreover, the pipe network theory is used to model the airflow in the pack and the heat convection between the air and the batteries. An experiment is implemented to verify prediction precision in the electrical and thermal parameters of the pack. The results show that the electrothermal model accurately estimates the electrical and thermal performance of the air-cooled pack. The relative error of the pack terminal voltage between the prediction and the experiment is 3.22% under the conditions of a discharging rate is 1.5 C (C denotes the ratio of charging/discharging current to battery capacity), environment temperature of 37°C, and air inlet velocity of 6 m/s. Regarding the prediction error in the temperature, the root mean square errors of most batteries are no more than 0.6°C under the conditions of discharge rates of 1 C and 1.5 C and ambient temperatures of 17°C, 27°C, and 37°C.  相似文献   

13.
《Journal of power sources》2006,162(1):719-726
A novel approach has been developed to measure the voltages of individual batteries used in electric vehicle (EV) battery packs using a unique selective battery measurement system. This system consists of a voltage measurement circuit that measures battery voltages using a set of electromechanical relays connected in a matrix formation. A 16-bit microcontroller was used for controlling the operation of the relay matrix circuit. The system was designed for a pack of 12 series connected 12 Vdc lead–acid batteries. The proposed approach was found to be compact and is a universal one that can be used for any type of battery. Moreover, the method was very effective and produced good accuracy. In fact, test results over a wide temperature range of −20 to +40 °C indicated that the method is very precise with voltage fluctuations less than ±30 mV.  相似文献   

14.
Battery thermal models for hybrid vehicle simulations   总被引:14,自引:0,他引:14  
This paper summarizes battery thermal modeling capabilities for: (1) an advanced vehicle simulator (ADVISOR); and (2) battery module and pack thermal design. The National Renewable Energy Laboratory’s (NREL’s) ADVISOR is developed in the Matlab/Simulink environment. There are several battery models in ADVISOR for various chemistry types. Each one of these models requires a thermal model to predict the temperature change that could affect battery performance parameters, such as resistance, capacity and state of charges. A lumped capacitance battery thermal model in the Matlab/Simulink environment was developed that included the ADVISOR battery performance models. For thermal evaluation and design of battery modules and packs, NREL has been using various computer aided engineering tools including commercial finite element analysis software. This paper will discuss the thermal ADVISOR battery model and its results, along with the results of finite element modeling that were presented at the workshop on “Development of Advanced Battery Engineering Models” in August 2001.  相似文献   

15.
With the depletion of fossil fuels and the aggravation of environmental pollution, the research and development speed of electric vehicles has been accelerating, and the thermal management of battery pack has become increasingly important. This paper selects the electric vehicle battery pack with natural air cooling as the study subject, conducts simulation analysis of the heat dissipation performance of battery packs with and without vents. Then this paper researches on the influence of internal flow field and external flow field. Field synergy principle is used to analyze the effect of velocity field and temperature field amplitude. The results show the following: it is found that the maximum temperature rise and the internal maximum temperature difference of the battery pack with vents are reduced by about 23.1% and 19.9%, raising speed value can improve the heat dissipation performance, and raising temperature value can decrease the heat dissipation performance. Reasonable design of the vents can make the inner and outer flow field work synergistically to achieve the best cooling effect. Then the reference basis for the air cooling heat dissipation performance analysis of electric vehicle, battery pack structure arrangement, and air‐inlet and air‐outlet pattern choosing are offered.  相似文献   

16.
鉴于汽车启动电源铅酸电池存在严重环境污染隐患,本文采用环保型32650圆柱磷酸铁锂电池组装成25.6 V/65 A•h电池组代替铅酸电池应用于汽车启动电源,并分别对磷酸铁锂电池组的常温和低温启动能力、倍率性能和低温放电性能等进行测试。实验结果表明,电池组0.33 C放电容量为67.028 A•h,3 C放电容量为0.33 C放电容量的98.24%,电池组具有较好的倍率性能;电池组在 −30℃放电容量为额定容量的84.7%,具有良好的低温性能;电池组在25℃和 −20℃下以600 A电流放电,单串电池电压均高于放电保护电压;电池组在25℃搁置28 d之后,容量恢复率为99.37%;磷酸铁锂电池组性能均满足汽车启动电源性能要求,可以代替铅酸电池作为汽车启动电源。  相似文献   

17.
The performance and parameters of Li-ion battery are greatly affected by temperature. As a significant battery parameter, state of charge (SOC) is affected by temperature during the estimation process. In this paper, an improved equivalent circuit model (IECM) considering the influence of ambient temperatures and battery surface temperature (BST) on battery parameters based on second-order RC model have been proposed. The exponential function fitting (EFF) method was used to identify battery model parameters at 5 ambient temperatures including −10°C, 0°C, 10°C, 25°C and 40°C, fitting the relationship between internal resistance and BST. Then, the SOC of the IECM was estimated based on the extended Kalman filter (EKF) algorithm. Using the result calculated by the Ampere-hour integration method as the standard, the data of battery under open circuit voltage (OCV) test profile and dynamic stress test (DST) profile at different ambient temperatures has been compared with the ordinary second-order RC model, and the advantages of the SOC estimation accuracy with IECM was verified. The numerical results showed that the IECM can improve the estimation accuracy of battery SOC under different operating conditions.  相似文献   

18.
This work investigates on the performance of a hybrid energy storage system made of a metal hydride tank for hydrogen storage and a lithium-ion battery pack, specifically conceived to replace the conventional battery pack in a plug-in fuel cell electric scooter. The concept behind this solution is to take advantage of the endothermic hydrogen desorption in metal hydrides to provide cooling to the battery pack during operation.The analysis is conducted numerically by means of a finite element model developed in order to assess the thermal management capabilities of the proposed solution under realistic operating conditions.The results show that the hybrid energy storage system is effectively capable of passively controlling the temperature of the battery pack, while enhancing at the same time the on-board storage energy density. The maximum temperature rise experienced by the battery pack is around 12 °C when the thermal management is provided by the hydrogen desorption in metal hydrides, against a value above 30 °C obtained for the same case without thermal management. Moreover, the hybrid energy storage system provides the 16% of the total mass of hydrogen requested by the fuel cell stack during operation, which corresponds to a significant enhancement of the hydrogen storage capability on-board of the vehicle.  相似文献   

19.
精确、可靠地识别异常电池是保障电池系统安全、稳定运行的有效手段。但是,从实时测量得到的电流、电压和温度有限外部信息,推断内阻、容量等电池内部信息,并识别异常电池难度很大。本工作针对串联锂离子电池组,基于各单体电压测量数据,提出了一种融合动态时间规整和多维标度策略的异常电池识别方法。通过采用动态时间规整策略,计算动态时间规整距离相似性指标,以消除电池组中荷电状态不一致的影响;进而结合多维标度法提取异常特征参数,实现异常电池可视化识别。通过电池系统仿真实验,验证了所提方法的有效性,为异常电池在线识别提供了一种有效技术。  相似文献   

20.
In this study, a three‐dimensional numerical model is developed to investigate the thermal and electrical characteristics of 18 650 lithium‐ion battery cells that are used in the solar racing car of Dokuz Eylül University, i.e., SOLARIS. The Newman, Tiedemann, Gu, and Kim (NTGK) battery model of ANSYS Fluent software is implemented to resolve the coupled multiphysics problem. In the analysis, only the discharging period of the battery is considered. Before going through parametric studies under variable weather conditions, time‐wise variations of the cell temperature and the battery voltage are evaluated both experimentally and numerically under two different ambient conditions of 0°C and 25°C. Comparative results revealed that reasonable predictions are achieved with the current battery model, and the difference between the predicted battery surface temperature and experimental data is less than 1°C. Following the model validation, the battery performance is numerically examined by applying the battery model to a real race procedure of SOLARIS. Phase change materials (PCMs) with different amounts and melting temperatures are implemented around the batteries, and transient analyses are conducted under real weather conditions. The current study aims to keep the battery temperature of a solar racing car above a certain limit to prevent the overcooling and maintain higher charging capacity. Implementation of PCM with a melting temperature of 26°C yields 3.15% of capacity increment, and such a performance improvement corresponds to 15.51 Wh of extra energy that can be extracted from an individual battery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号