首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wastewater treatment leads to an increase in sewage sludge production. Sewage sludge consists, in general, of non-toxic organic matter and therefore can be utilized as a biomass resource for energy production. Energy recovery from sewage sludge via thermochemical valorization processes seems of great potential. Processes’ products can be used as bio-fuels, while minimization of the environmental impacts can be also achieved. In particular, wet sewage sludge pyrolysis-partial gasification at high temperatures and especially gasification give a new perspective for hydrogen-rich fuel gas production. Co-processing of sewage sludge with biomass improves the fuel's characteristics and enhances the processes efficiency. In addition, blends of sewage sludge with biomass contribute in diluting the inorganic and toxic compounds. Towards that direction, algae production using wastewater resources and then to be used for biofuels production seems a sustainable solution that is the reason why exploitation of such a material through thermochemical processes is under intensive discussion.  相似文献   

2.
3.
The metal hydride reactors are widely used in many industrial applications, for example, hydrogen storage, heat pump, thermal compression, gas separation, etc. The performance of the reactor is greatly affected by its design, which deserves careful study. Given the complicated nature of the hydride formation/decomposition processes, a series of technical issues are involved in the design of metal hydride reactors, such as primary configuration, thermal management, hydrogen transfer and mechanistic strength. These issues should be well addressed to fulfil the requirement of specific application. In this paper, the representative achievements with regards to the design issues so far were reviewed in detail, and some comments were made accordingly. It was concluded that an optimized reactor design comes from integrated considerations of numerous factors, particularly requirements for the applications and characteristics of the metal hydride system. The analytic hierarchy process was recommended for use in the selection of the optimum reactor scheme.  相似文献   

4.
The IEA/NEA recently issued their eighth edition of the Study on the “Projected Costs of Generating Electricity” – 2015 edition. The Study is mainly concerned with calculating the levelised cost of electricity (LCOE). The LCOE calculations are based on a levelised average life time cost approach using the discounted cash flow (DCF) method. The analysis was this year, and for the first time, performed using three discount rates (3%, 7%, and 10%). The LCOE can serve as a tool for calculating the cost of different generation technologies. However the Study's usefulness is affected by its narrow base of a limited set of countries that are not necessarily representative. It ignored the negative role of subsidies and did not provide a methodology for selective application of the discount rates and costing of carbon. The global power generation scene is changing. Generation growth in OECD countries has become very limited; simultaneously there is rapid growth of varying renewables (VRE) generation which needs special criteria for assessing its system cost. All this demands a rethinking of the application and usefulness of the LCOE in future generation planning.  相似文献   

5.
The sustainability of the utilization of wood biomass for energy and other purposes has been widely assessed in different studies. Especially discrete methods from the family of Multi-Criteria Decision Analysis (MCDA), such as Outranking methods, Multi-Attribute Utility Theory, and Analytic Hierarchy Process (AHP) are often applied. AHP is considered one of the most promising options to be used in sustainability assessments, because it is comprehensible to apply and it incorporates the preferences of decision-makers in an advanced manner. In this study, we present a theoretical multi-dimensional framework based on a modified version of AHP for assessing sustainability and apply it in a case of wood-based bioenergy production in eastern Finland. The framework includes four dimensions of sustainability and life cycle phases from the acquisition of raw material to manufacturing the final product. The production systems used in the empirical sustainability assessments are a local heat production plant, a combined heat and power production plant, and a wood pellet processing plant. Local sustainability experts identified indicators relevant at the regional scale. The impact assessment data were obtained from literature, by interviewing the managers of the bioenergy plants, and from a postal survey administered to local people. The local heat provider received the highest sustainability index; however, there were no considerable differences between the sustainability indexes. None of the bioenergy production systems can be considered the most sustainable regardless of the assumptions employed in the framework. The framework provided the basis for a quantitative, interdisciplinary approach to assess sustainability.  相似文献   

6.
Hydrogen is widely used in many industries, yet its role in the clean energy transition goes beyond being an element of these industries. Near-term practical large-scale clean hydrogen production can be made available by involving nuclear, solar, and other renewable energy sources in the process of hydrogen production, and coupling their energy systems to sustainable carbon-free hydrogen technologies. This requires further investigation and assessment of the different alternatives to achieve clean hydrogen using these pathways. This paper assesses the technoeconomics of promising hydrogen technologies that can be coupled to nuclear and solar energy systems for large-scale hydrogen production. It also provides an overview of the design, status and advances of these technologies.  相似文献   

7.
Biomass is a renewable resource from which a broad variety of commodities can be produced. However, the resource is scarce and must be used with care to avoid depleting future stock possibilities. Flexibility and efficiency in production are key characteristics for biomass conversion technologies in future energy systems. Thermal gasification of biomass is proved throughout this article to be both highly flexible and efficient if used optimally. Cogeneration processes with production of heat-and-power, heat-power-and-fuel or heat-power-and-fertilizer are described and compared. The following gasification platforms are included in the assessment: The Harboøre up draft gasifier with gas engine, the Güssing FICFB gasifier with gas engine or PDU, the LT-CFB gasifier with steam cycle and nutrient recycling and finally the TwoStage down draft gasifier with gas engine, micro gas turbine (MGT), SOFC, SOFC/MGT or catalytic fuel synthesis.  相似文献   

8.
Sustainability is a key principle in natural resource management, and it involves operational efficiency, minimisation of environmental impact and socio-economic considerations; all of which are interdependent. It has become increasingly obvious that continued reliance on fossil fuel energy resources is unsustainable, owing to both depleting world reserves and the green house gas emissions associated with their use. Therefore, there are vigorous research initiatives aimed at developing alternative renewable and potentially carbon neutral solid, liquid and gaseous biofuels as alternative energy resources. However, alternate energy resources akin to first generation biofuels derived from terrestrial crops such as sugarcane, sugar beet, maize and rapeseed place an enormous strain on world food markets, contribute to water shortages and precipitate the destruction of the world's forests. Second generation biofuels derived from lignocellulosic agriculture and forest residues and from non-food crop feedstocks address some of the above problems; however there is concern over competing land use or required land use changes. Therefore, based on current knowledge and technology projections, third generation biofuels specifically derived from microalgae are considered to be a technically viable alternative energy resource that is devoid of the major drawbacks associated with first and second generation biofuels. Microalgae are photosynthetic microorganisms with simple growing requirements (light, sugars, CO2, N, P, and K) that can produce lipids, proteins and carbohydrates in large amounts over short periods of time. These products can be processed into both biofuels and valuable co-products.This study reviewed the technologies underpinning microalgae-to-biofuels systems, focusing on the biomass production, harvesting, conversion technologies, and the extraction of useful co-products. It also reviewed the synergistic coupling of microalgae propagation with carbon sequestration and wastewater treatment potential for mitigation of environmental impacts associated with energy conversion and utilisation. It was found that, whereas there are outstanding issues related to photosynthetic efficiencies and biomass output, microalgae-derived biofuels could progressively substitute a significant proportion of the fossil fuels required to meet the growing energy demand.  相似文献   

9.
In this review paper, the authors have presented a brief conceptual summary of the applications of biofuel cell in general and enzymatic one in special with a short historical background, rather than their design and operation. Greater emphasis has been given to the recent progress in the development of biofuel cells and their applications for powering bioelectronic devices. Importance of electronic management of the energy derived from biological sources and interfacing enzyme-based biofuel cells with power consuming microelectronic devices have also been discussed briefly. The applications of the enzyme in the advancement of anode and cathode of biofuel cells based on the classification of single-enzyme and multi-enzyme catalysis system have also been briefly reviewed. In addition, the role of nanotechnology accompanied with redox mediators in enhancing the power output of enzymatic biofuel cells has been discussed with the help of some notable research efforts made recently with a particular emphasis on some of the latest and most imperative breakthroughs in EBFCs design based on buckypapers and carbon nanodots. The progress in implantable and self-powered bioelectrochemical devices with special heed to latest advances have been summarized in the light of several briefly described research contributions made in recent years. Moreover, the long-term stability and factors influencing the catalytic activity of enzymes in EBFCs have been reviewed in the context of the implantable and wearable application of these power sources. Finally, its prospects along with the prevailing scientific and technical challenges that will need to be resolved in the future for realizing their practical applications are discussed briefly.  相似文献   

10.
A comprehensive review of the literature on the flow of various refrigerants through the capillary tubes of different geometries viz. straight and coiled and flow configurations viz. adiabatic and diabatic, has been discussed in this paper. The paper presents in chronological order the experimental and numerical investigations systematically under different categories. Flow aspects like effect of coiling and effect of oil in the refrigerants on the mass flow rate through the capillary tube have been discussed. Furthermore, the phenomenon of metastability and the correlations to predict the underpressure of vaporization have also been discussed. The paper provides key information about the range of input parameters viz. tube diameter, tube length, surface roughness, coil pitch and coil diameter, inlet subcooling and condensing pressure or temperature. Other information includes type of refrigerants used, correlations proposed and methodology adopted in the analysis of flow through the capillary tubes of different geometries operating under adiabatic and diabatic flow conditions. It has been found from the review of the literature that there is a lot more to investigate for the flow of various refrigerants through different capillary tube geometries.  相似文献   

11.
12.
Despite remarkable progress in catalytic fast pyrolysis, bio-oil production is far from commercialization because of multi-scale challenges, and major constraints lie with catalysts. This review aims to introduce major constraints of acid catalysts and simultaneously to find out possible solutions for the production of fuel-grade bio-oil in biomass catalytic fast pyrolysis. The catalytic activities of several materials which act as acid catalysts and the impacts of Bronsted and Lewis acid site on the formation of aromatic hydrocarbons are discussed. Considering the complexity of catalytic fast pyrolysis of biomass with acid catalysts, in-depth understandings of cracking, deoxygenation, carbon-carbon coupling, and aromatization for both in-situ and ex-situ configurations are emphasized. The limitation of diffusion along with coke formation, active site poisoning, thermal/hydrothermal deactivation, sintering, and low aromatics in bio-oil are process complexities with solid acid catalysts. The economic viability of large-scale bio-oil production demands progress in catalyst modification or/and developing new catalysts. The potential of different catalyst modification strategies for an adequate amount of acid sites and pore size confinement is discussed. By critically evaluating the challenges and potential of catalyst modification techniques, multi-functional catalysts may be an effective approach for selective conversion of biomass to bio-oil and chemicals through catalytic fast pyrolysis. This review offers a scientific reference for the research and development of catalytic fast pyrolysis of biomass.  相似文献   

13.
A review is carried out on the development of small- and micro-scale biomass-fuelled combined heat and power (CHP) systems. Discussions have been concentrated on the current application of Organic Rankine Cycle (ORC) in small- and micro-scale biomass-fuelled CHP systems. Comparisons have been made between ORC and other technologies such as biomass gasification and micro-turbine based biomass-fuelled CHP systems. The advantages and disadvantages of each technology have been discussed. Recommendations have been made on the future development of small- and micro-scale biomass-fuelled CHP.  相似文献   

14.
This paper starts with a review on challenges and need of improved supercapacitor application, which is then followed by advantages of biomass compared with other materials for use in supercapacitor application. The conversion of biomass into carbon nanofiber using different techniques was extensively reviewed for its advantages and limitations. It was revealed that the materials currently used are yet to be fully sustainable or feasible for energy storage application. In contrast, biomass represents a widely available and sustainable material to be converted into carbon nanofiber for energy storage application. Different techniques were employed for carbon nanofiber production to achieve different objectives, comprising high product yield, feasible diameter adjustment, low electric consumption, and shorter production time. Nevertheless, it was revealed that many key properties of the biomass-derived carbon nanofiber have yet to be fully investigated, as there are still knowledge gaps to be filled for each technique. Thus, more studies are needed to broaden the existing understanding in the key parameters of different techniques in order to develop a highly desirable carbon nanofiber from biomass for sustainable energy storage application.  相似文献   

15.
Adsorption air-conditioning technology has attracted much attention recently due to its environmental friendly property. Some successes have been reported in the literature on the adsorption technology for air-conditioning applications. This paper presents an overview of the researches which had been carried out on adsorption refrigeration system with the commonly used adsorbent and adsorbate working pairs, solar adsorption refrigeration and adsorption technologies in automobile. Activated carbon has been widely used as the adsorbent in adsorption refrigeration system. However, one of the bottlenecks which prevent the improvement of the adsorption refrigeration technology using activated carbon is the use of the readily available commercial activated carbon without prior treatment, which has resulted in relatively lower performance as compared to the conventional absorption and vapour compression technologies. Various modification methods on activated carbon are thus discussed in this paper for future development and improvement of adsorption air-conditioning system.  相似文献   

16.
Intermediate temperature solid oxide fuel cells (IT-SOFCs) using chromia-forming alloy interconnect requires the development of cathode not only with high electrochemical activity but also with the high resistance or tolerance towards Cr deposition and poisoning. This is due to the fact that, at SOFC operating temperatures, volatile Cr species are generated over the chromia scale, poisoning the cathodes such as (La,Sr)MnO3 (LSM) and (La,Sr)(Co,Fe)O3 (LSCF) and causing a rapid degradation of the cell performance. Thus, a fundamental understanding of the interaction between the Fe–Cr alloys and SOFC cathode is essential for the development of high performance and stable SOFCs. The objective of this paper is to critically review the progress and particularly the work done in the last 10 years in this important area. The mechanism and kinetics of the Cr deposition and Cr poisoning process on the cathodes of SOFCs are discussed. Chromium deposition at SOFC cathodes is most likely dominated by the chemical reduction of high valence Cr species, facilitated by the nucleation agents on the electrode and electrolyte surface and/or at the electrode/electrolyte interface, i.e., the nucleation theory. The driving force behind the nucleation theory is the surface segregation and migration of cationic species on the surface of perovskite oxide cathodes. Overwhelming evidences indicate that the surface segregation plays a critical role in the Cr deposition. The prospect of the development in the Cr-tolerant cathodes for SOFCs is presented.  相似文献   

17.
In general, there is a wide range of literature covering the area of thermal comfort, but not a focused literature review of thermal comfort in hospitals has published yet. However, there has been no study on the direct effect of thermal comfort on health. The authors have found a reasonable amount of literature in thermal comfort in hospitals. This paper presents a literature review on thermal comfort in hospitals. From the review, the paper concludes that it is important to undertake original studies in the relationship between thermal comfort conditions and productivity for hospital staff. The study finally concluded that it is important to find some solutions to reconcile the different thermal comfort conditions required by different occupants in hospitals. These solutions could be used whenever patients and the attending caregivers have to stay in one room for a long time compulsorily.  相似文献   

18.
The environmental concern and availability of fuels are greatly affecting the trends of fuels for transportation vehicles. Biodiesel is one of the options as alternative transport fuel. This can be produced from straight vegetable oils (SVOs), oils extracted from various plant species and animal fats. Amongst many resources, availability and cost economy are the major factors affecting the large scale production of the biodiesels. The transesterification is one of the production processes for biodiesel, but incomplete esterification of all fatty acids in the starting material, lengthy purification methods such as water washing, relatively long reaction times, contamination and separation difficulties associated with co-production of glycerol and saponification of the starting material under certain reaction conditions are still being major challenges in the biodiesel production. Technological advancement and enhanced production methods are the demand of present time for large scale and sustainable production of biodiesel. In the present paper, comprehensive review on its production process, feed stock and its applications have been made. From many case studies it was concluded that engine performance with B20 biodiesel blends, and mineral diesel were found comparable.  相似文献   

19.
Recognized as one of the most mature renewable energy technologies, wind energy has been developing rapidly in recent years. Many countries have shown interest in utilizing wind power, but they are concerned about the environmental impacts of the wind farms. The continuous growth of the wind energy industry in many parts of the world, especially in some developing countries and ecologically vulnerable regions, necessitates a comprehensive understanding of wind farm induced environmental impacts. The environmental issues caused by wind farms were reviewed in this paper by summarizing existing studies. Available mitigation measures to minimize these adverse environmental impacts were discussed in this document. The intention of this paper is to provide state-of-the-art knowledge about environmental issues associated with wind energy development as well as strategies to mitigate environmental impacts to wind energy planners and developers.  相似文献   

20.
There is an enormous driving force in solid oxide fuel cells (SOFCs) to reduce the operating temperatures from high temperatures (800–1000 °C) to intermediate and low temperatures (400–800 °C) in order to increase the durability, improve thermal compatibility and thermal cycle capability, and reduce the fabrication and materials costs. One of the grand challenges is the development of cathode materials for intermediate and low temperature SOFCs with high activity and stability for the O2 reduction reaction (ORR), high structural stability as well as high tolerance toward contaminants like chromium, sulfur and boron. Lanthanum strontium cobalt ferrite (LSCF) perovskite is the most popular and representative mixed ionic and electronic conducting (MIEC) electrode material for SOFCs. LSCF-based materials are characterized by high MIEC properties, good structural stability and high electrochemical activity for ORR, and have played a unique role in the development of SOFCs technologies. However, there appears no comprehensive review on the development and understanding of this most important MIEC electrode material in SOFCs despite its unique position in SOFCs. The objective of this article is to provide a critical and comprehensive review in the structure and defect chemistry, the electrical and ionic conductivity, and relationship between the performance, intrinsic and extrinsic factors of LSCF-based electrode materials in SOFCs. The challenges, strategies and prospect of LSCF-based electrodes for intermediate and low temperature SOFCs are discussed. Finally, the development of LSCF-based electrodes for metal-supported SOFCs and solid oxide electrolysis cells (SOECs) is also briefly reviewed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号