首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present work developed a spectral splitting hybrid photovoltaic/thermal (PV/T) system based on polypyrrole nanofluid. This hybrid PV/T system can overcome the limitation of temperature in traditional PV/T, and achieve a high-temperature thermal output. In this system, the polypyrrole nanofluid employed in the spectral splitting filter can absorb the solar radiation that can't be efficiently utilized by PV cell unit, and convert it into medium-temperature thermal energy. The principle and methodology of the experimental system design was discussed, and the effect of particle concentration on the performance of system was investigated as well. The present work not only verifies the application potential of polypyrrole nanofluid in spectral splitting PV/T system, but also obtains some important rules on the performance. The results indicate that the temperature of nanofluid and the PV efficiency of cell unit itself increases with the particle concentration, but the thermal efficiency decreases simultaneously. The maximum overall efficiency of this hybrid PV/T system with polypyrrole nanofluid filter was 25.2%, which was 13.3% higher than that without filter. More importantly, the medium-temperature thermal energy can be harvested in such a hybrid system. Furthermore, an optimal particle concentration can probably realize a higher overall efficiency.  相似文献   

2.
This article presents an overview on the research and development and application aspects for the hybrid photovoltaic/thermal (PV/T) collector systems. A major research and development work on the photovoltaic/thermal (PVT) hybrid technology has been done since last 30 years. Different types of solar thermal collector and new materials for PV cells have been developed for efficient solar energy utilization. The solar energy conversion into electricity and heat with a single device (called hybrid photovoltaic thermal (PV/T) collector) is a good advancement for future energy demand. This review presents the trend of research and development of technological advancement in photovoltaic thermal (PV/T) solar collectors and its useful applications like as solar heating, water desalination, solar greenhouse, solar still, photovoltaic-thermal solar heat pump/air-conditioning system, building integrated photovoltaic/thermal (BIPVT) and solar power co-generation.  相似文献   

3.
Hybrid photovoltaic thermal system is an effective method to convert solar energy into electrical and thermal energy. However, its effectiveness is widely affected due to the high temperature of photovoltaic panel, and it can be minimized by employing nanofluids to the PV/T systems. In this research, the effect of various nanoparticles on the PV/T systems was studied experimentally. The nanofluids Al2O3, CuO, and multiwall carbon nanotube (MWCNT) were dispersed with water at different volume fractions of 0, 0.5, 1, 2.5, and 5 (vol%) using ultrasonication process. The effect of nanomaterials on viscosity and density was classified. All tests were carried out in an outdoor laboratory setup for calibrating the PV temperatures, thermal conductivity, electrical power, electrical efficiency, and overall efficiency. In addition, the energy analyses were also made to estimate the loss of heat owing to the nanofluids. Results show that use of the nanofluid increased the electric power and electrical efficiency of PV/T compared with water. Furthermore, MWCNT and CuO reduced the cell temperature by 19%. Consequently, the nanofluids MWCNT, Al2O3, and CuO produced the impressive values of 60%, 55%, and 52% increase in an average electrical efficiency than conventional PV. Particularly, the MWCNT produced superior results compared with other materials. It is evidently clear from the result that the introduction of the nanofluid increases the thermal efficiency without adding any extra energy to the system. Moreover, insertion of Al2O3, CuO, and MWCNT on PV/T system increases the exergy efficiency more than conventional PV module.  相似文献   

4.
Solar photovoltaic-thermal (PV/T) collectors, are hybrid collectors used to convert solar radiation into usable thermal and electrical energy. Recently, the field of research on PV/T is has focused on improving the efficiency of the PV/T collector by replacing the conventional heat transfer fluids (HTFs) with nanofluids. This article investigates the effect of hybrid nanofluids mixture ratio on the useful energy and overall efficiency of a PV/T collector operating with Al2O3-ZnO water nanofluid as the HTF. Experiments to measure the thermophysical properties of the hybrid nanofluids were conducted for various temperatures, volume concentrations, and mixture ratios, furthermore, accurate correlation models were proposed. Metrological data and energy output readings collected from the PV solar farm at Cyprus International University were used to validate our model. The study observed that at the optimum mixture ratio (0.47 of Al2O3 in the hybrid), the electrical, thermal, and exergy efficiencies of the PV/T collector are 13.8%, 55.9%, and 15.13% respectively. Also, the cell temperature drops by 21% when the mass flow rate is 0.1 kg/s as compared to when it is 0.01 kg/s. Finally, the study concludes that by using the Al2O3-ZnO hybrid nanofluid an overall peak thermal efficiency of 91% can be attained, and this represents a 34% enhancement in the collector's performance when compared to water.  相似文献   

5.
提出了一种具有选择性吸收功能的直接吸收式油基纳米流体太阳能电热联产系统,采用油基二氧化钛纳米流体匹配硅光伏电池板以实现对太阳辐射的分波段利用.通过求解辐射传递方程和能量守恒方程,分析了该系统在不同聚光强度和工质循环速率条件下的工作性能.通过与传统电热联产系统中光伏模块工作温度、循环流体出口温度、光热转换效率,以及光电转换效率的比对,验证了该系统能够在维持良好的光伏电池热管理的同时获得相对高品位热能收集.结果表明,在入射光强小于200 kW/m2工况下,该系统中的光伏电池板的工作温度能够维持在330K以下,其系统总的有效输出能相较于采用导热油作为循环工质的传统电热联产系统可实现16% ~58%的效率提升.  相似文献   

6.
一种新型全铝扁盒式PV/T热水系统   总被引:3,自引:0,他引:3  
将单晶硅光伏电池与全铝扁盒式太阳能热水器集热板通过特殊工艺粘结起来,制成了一套自然循环式光伏光热一体化(PV/T)系统,在利用太阳能发电的同时提供热水。于04年7月-10月在合肥地区进行了室外实验,测试并讨论了该系统以不同水量和不同初始水温运行时的光电光热性能。结果表明,当m/Ac>80kg/m2时,这种PV/T热水系统的发电效率在10.15%左右,热效率在50%左右,光电光热总效率可以达到60%左右,光电光热综合性能效率可以达到70%左右。相对于单纯的光伏系统或自然循环式太阳能热水系统,这种PV/T热水系统具有占地面积小、综合效率高等优点。  相似文献   

7.
In the paper, we analyzed internal thermal transmission characteristics of water‐heating photovoltaic/thermal (PV/T) solar collector covered by photovoltaic (PV) cell, established photothermal conversion model of PV/T solar system, and analyzed the influence of PV cell coverage to photothermal characteristics of PV/T solar system. Results show that the thermal efficiency of PV/T solar system by optimizing PV cells coverage can reach 68%. In addition, by designing four water‐heating PV/T solar system prototypes with PV cell coverage of 0.4, 0.56, 0.7, and 0.82, respectively, we conducted experimental researches for the four prototypes and found that the four prototypes can achieve thermal efficiencies of 58%, 51%, 64%, and 67%, respectively, in heating 250 L of water to 50°C. The experiment results are consistent with theoretical analysis results, indicating that it is feasible to improve thermal characteristics of PV/T solar system by optimizing PV cell coverage. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
In the present investigation a theoretical analysis has been presented for the modelling of thermal and electrical processes of a hybrid PV/T air heating collector coupled with a compound parabolic concentrator (CPC). In this design, several CPC troughs are combined in a single PV/T collector panel. The absorber of the hybrid PV/T collector under investigation consists of an array of solar cells for generation of electricity, while collector fluid circulating past the absorber provides useful thermal energy as in a conventional flat plate collector. In the analysis, it is assumed that solar cell efficiency can be represented by a linear decreasing function of its temperature. Energy balance equations have been developed for the various components of the system. Based on the developed analysis, both thermal and electrical performance of the system as a function of system design parameters are presented and discussed. Results have been presented to compare the performance of hybrid PV/T collector coupled with and without CPC. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

9.
Using of nanofluids in the concentrating direct absorption solar collectors has the potential of reducing thermal losses because of the excessive temperature of the absorbing surface in the conventional solar collectors. However, increasing the concentration ratio of solar radiation must be followed by increasing the volume fraction of the nanoparticles, which, in turn, has the drawbacks of increasing the settlement and agglomeration rates of the nanoparticles. In this study, we have suggested using the plasmonic nanofluids for volumetric absorption in the concentrated solar power applications because of the less volume fraction of the plasmonic nanoparticles that are required to harvest the concentrated solar radiation. The interaction of concentrated solar radiation with different morphologies of silver nanoparticles coated by silica shell has been computationally studied. Then, the finite element method has been implemented to determine the photo-thermal conversion efficiency for silver nanosphere and nanoplates with a silica shell. Silver nanoparticles coated by silica exhibit a promising potential because of their distinct characteristics. The silica shell is transparent to the visible and near-infrared radiation bands; it also consolidates the intensity of the localized plasmon resonance and so the absorption characteristics, besides its protective role. A high-efficiency low concentration nanofluid has been designed using blended morphologies of Ag nanospheres and nanoprisms with silica-coating–based nanofluid for full-spectrum absorption characteristics. The suggested nanofluid exhibits a promising performance at a volume fraction of 0.0075 wt% where the volumetric solar collector efficiency exceeds 75% under the solar concentration ratio of 50.  相似文献   

10.
Y.B. Assoa  C. Menezo  G. Fraisse  R. Yezou  J. Brau   《Solar Energy》2007,81(9):1132-1143
This work represents the second step of the development of a new concept of photovoltaic/thermal (PV/T) collector. This type of collector combines preheating of the air and the production of hot water in addition to the classical electrical function of the solar cells. The alternate positioning of the thermal solar collector section and the PV section permits the production of water at higher mean temperatures than most of existing hybrid collectors. These higher temperatures will allow the coupling of components such as solar cooling devices during the summer and obviously a direct domestic hot water (DHW) system without the need for additional auxiliary heating systems. In this paper, a simplified steady-state two-dimensional mathematical model of a PV/T bi-fluid (air and water) collector with a metal absorber is developed. Then, a parametric study (numerically and experimentally) is undertaken to determine the effect of various factors such as the water mass flow rate on the solar collector thermal performances. Finally, the results from an experimental test bench and the first simulation results obtained on full scale experiments are compared.  相似文献   

11.
太阳能光伏光热一体化系统的实验研究   总被引:10,自引:5,他引:10  
为提高太阳能的利用率同时得到可资利用的热水和电力,将小型贮能式光伏系统与家用平板型太阳能热水器结合起来,把光优电池组件层压在热水器的扁盒式铝合金集热板上,构成一套光优光热(PV/T)一体化系统,并在合肥地区进行了自然循环模式下的光电光热性能测试。实验结果表明,在晴朗或多云的天气条件下实验系统日平均热效率可达40%,日平均发电效率约9.5%,系统综合性能效率多在60%以上,比单独的光伏或热水系统效率有显著提高。  相似文献   

12.
为充分利用建筑屋顶,解决光伏光热一体化(PV/T)集热器光电转换效率的高温减益问题,并提高太阳能综合利用率和集热品位,文章构建了一种基于太阳光谱分频利用技术的光伏/光热模块分离式的小型聚光式PV/T集热器。通过建立其光/电/热理论分析模型及TracePro/Fluent数值仿真模型,以南京地区气象数据为例,综合分析其光/电/热性能,结果表明:该集热器以与安装地纬度等值的倾角南北轴向放置时,其年均光学效率为64.97%,工质出口温度为90℃时的系统光电/光热效率分别为12.47%,40.09%,系统综合热效率达72.91%,且其结构简单、外形轻薄,有望实现与普通建筑的有效结合。  相似文献   

13.
Achieving high temperature thermal outputs from concentrating photovoltaic/thermal (PV/T) systems presents a challenge in that the performance of the PV cells declines with increasing temperature. Spectral beam splitting is an attractive approach to address this conflict by thermally decoupling the PV and thermal receivers, allowing the PV cells to operate at low temperature and the thermal receiver to operate at high temperature. In this study, SiNx/SiO2 multilayer thin film filters were designed and fabricated to act as beam splitting devices in a 10 sun, linear Fresnel mirror-based, concentrating PV/T solar collector. In this collector, reflected light is directed to a silicon PV cell whilst the transmitted light is directed to a thermal receiver. Plasma-enhanced chemical vapor deposition (PECVD) was used to fabricate the filters which were designed to obtain maximum hybrid output. The resulting devices have high reflectance (greater than 95%) for light between 713 and 1067 nm and high transmittance (greater than 90%) for sunlight outside that reflection window. The concentration of process gases in the PECVD reactor was varied in order to reduce undesired absorption at short wavelengths –lower than 650 nm– by the SiNx layers. Indoor testing was carried out for the filters in a system which consists of a Si PV cell, a thermal sensor, and a solid-state plasma light source (6500 K black body spectrum). This study tested filter performance for various angles of incidence (AOI) between 20 and 45°. The experimental results indicate that the PV cells, illuminated with the reflected light from the filters, operate on average at 9.2% absolute higher efficiency than the same cells without the filter. Furthermore, for the best filter, in terms of relative percentage, the measured hybrid output (weighted by a worth factor of electrical vs. thermal energy) is ∼9% higher than the electrical output of a PV cell stand-alone system exposed to the same light source. This paper represents the first study of a hybrid PV/T solar collector using SiNx/SiO2 thin film filters and demonstrates the feasibility of such systems. This study also indicates that this type of system can utilize 85.6% of the incoming solar spectrum based on the measured optical properties of the filters.  相似文献   

14.
In order to get more power and heat from PV/T system, it is necessary to cool the PV cell and decrease its temperature. This is not an easy task especially in hot and humid climate areas. There is a lack of an effective cooling strategy of PV/T panels. The liquid based photovoltaic thermal collector systems are practically more desirable and effective than air based systems. Temperature fluctuation in liquid based PV/T is much less than the air based PV/T collectors which subjected to variation in solar radiation levels. In this study a review of the available literature on PV/T collector systems which utilize water and refrigerant (working fluid) as heat removal medium for different applications has been conducted. Future direction of water-cooled and refrigerant hybrid photovoltaic thermal systems was presented. This study revealed that the direct expansion solar-assisted heat pump system achieved better cooling effect of the PV/T collector.  相似文献   

15.
A computer simulation model is presented for the analysis of a solar photovoltaic/thermal (PV/T) hybrid collector with air as heat transfer fluid and algorithm for making quantitative prediction regarding the performance of the system is described. Thermal efficiency curves for the solar PV/T hybrid collectors corresponding to various type of absorbers have been derived. In order to appreciate the model, numerical calculations have been made for evaluating the system performance corresponding to typical climate of Delhi, India  相似文献   

16.
The use of PV/T in combination with concentrating reflectors has a potential to significantly increase power production from a given solar cell area. A prototype double-pass photovoltaic-thermal solar air collector with CPC and fins has been designed and fabricated and its performance over a range of operating conditions was studied. The absorber of the hybrid photovoltaic/thermal (PV/T) collector under investigation consists of an array of solar cells for generating electricity, compound parabolic concentrator (CPC) to increase the radiation intensity falling on the solar cells and fins attached to the back side of the absorber plate to improve heat transfer to the flowing air. Energy balance equations have been developed for the various nodes of the system. Both thermal and electrical performance of the collector are presented and discussed.  相似文献   

17.
In this paper, an attempt has been made to evaluate the overall performance of hybrid PV/thermal (PV/T) air collector. The different configurations of hybrid air collectors which are considered as unglazed and glazed PV/T air heaters, with and without tedlar. Analytical expressions for the temperatures of solar cells, back surface of the module, outlet air and the rate of extraction of useful thermal energy from hybrid PV/T air collectors have been derived. Further an analytical expression similar to Hottel–Whiller–Bliss (HWB) equation for flat plate collector has also been derived in terms of design and climatic parameters. Numerical computations have been carried out for composite climate of New Delhi and the results for different configurations have been compared. The thermal model for unglazed PV/T air heating system has also been validated experimentally for summer climatic conditions. It is observed that glazed hybrid PV/T without tedlar gives the best performance.  相似文献   

18.
太阳能电热联用系统研究进展   总被引:3,自引:0,他引:3  
首先对太阳能电热联用系统的基本组成形式进行了简要介绍,并对不同的电热联用集热器、热能利用 方式进行了对比分析,接着对电热联用的研究方法和发展现状进行了详细说明,并列举了一些电热联用产品和 示范工程,最后指出了电热联用发展中应解决的问题,并对其发展前景进行了展望。  相似文献   

19.
文章利用TRNSYS动态模拟软件研究了在我国不同建筑气候带条件下,不同类型的太阳能PV/T集热系统和普通太阳能PT集热系统的各项性能.其中,太阳能PV/T集热系统分为基于普通玻璃型太阳能PV/T集热系统和基于Low-e型太阳能PV/T集热系统.文章探究了基于普通玻璃型太阳能PV/T集热系统和基于Low-e型太阳能PV/...  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号