首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The last few years have witnessed rapid development of biological and medical applications of graphene oxide (GO), such as drug/gene delivery, biosensing, and bioimaging. However, little is known about the cellular uptake mechanism and pathway of GO. In this work, surface-enhanced Raman scattering (SERS) spectroscopy is employed to investigate the cellular internalization of GO loaded with Au nanoparticles (NPs) by Ca Ski cells. The presence of Au NPs on the surface of GO enables detection of enhanced intrinsic Raman signals of GO inside the cell. The SERS results reveal that GO is distributed inhomogeneously inside the cell. Furthermore, internalization of Au-GO into Ca Ski cells is mainly via clathrin-mediated endocytosis, and is an energy-dependent process.  相似文献   

2.
3.
4.
Bistable switches are widely used in synthetic biology to trigger cellular functions in response to environmental signals. All bistable switches developed so far, however, control the expression of target genes without access to other layers of the cellular machinery. Here, we propose a bistable switch to control the rate at which cells take up a metabolite from the environment. An uptake switch provides a new interface to command metabolic activity from the extracellular space and has great potential as a building block in more complex circuits that coordinate pathway activity across cell cultures, allocate metabolic tasks among different strains or require cell-to-cell communication with metabolic signals. Inspired by uptake systems found in nature, we propose to couple metabolite import and utilization with a genetic circuit under feedback regulation. Using mathematical models and analysis, we determined the circuit architectures that produce bistability and obtained their design space for bistability in terms of experimentally tuneable parameters. We found an activation–repression architecture to be the most robust switch because it displays bistability for the largest range of design parameters and requires little fine-tuning of the promoters'' response curves. Our analytic results are based on on–off approximations of promoter activity and are in excellent qualitative agreement with simulations of more realistic models. With further analysis and simulation, we established conditions to maximize the parameter design space and to produce bimodal phenotypes via hysteresis and cell-to-cell variability. Our results highlight how mathematical analysis can drive the discovery of new circuits for synthetic biology, as the proposed circuit has all the hallmarks of a toggle switch and stands as a promising design to control metabolic phenotypes across cell cultures.  相似文献   

5.
Abstract

In the present work, we compare the structure and transport properties of carbon nanohorns (CNHs) synthesized by arc evaporation of graphite alone and with the addition of some portion of toluene. The materials have been investigated using transmission electron microscopy, Raman and infrared spectroscopies, thermogravimetric and BET analyses. The addition of a small amount of toluene during the evaporation of graphitic rod increases the length of CNHs, affects their hierarchical arrangement in aggregates and results in surface functionalization. All these features significantly enhance the conductivity of CNHs obtained with toluene additive in comparison with the pristine CNHs.  相似文献   

6.
A critical factor for controlling serum albumin binding is surface hydrophobicity, which in turn decreases the cellular uptake of gold nanoparticles. Hydrophobic nanoparticles bind albumin more tightly, inhibiting particle uptake, with a direct correlation observed between uptake and surface hydrophobicity.  相似文献   

7.
Multiwalled carbon nanotubes in alfalfa and wheat: toxicology and uptake   总被引:1,自引:0,他引:1  
Data on the bioavailability and toxicity of carbon nanotubes (CNTs) in the environment, and, in particular, on their interactions with vascular plants, are limited. We investigated the effects of industrial-grade multiwalled CNTs (75 wt% CNTs) and their impurities on alfalfa and wheat. Phytotoxicity assays were performed during both seed germination and seedling growth. The germinations of both species were tolerant of up to 2560 mg l−1 CNTs, and root elongation was enhanced in alfalfa and wheat seedlings exposed to CNTs. Remarkably, catalyst impurities also enhanced root elongation in alfalfa seedlings as well as wheat germination. Thus the impurities, not solely the CNTs, impacted the plants. CNT internalization by plants was investigated using electron microscopy and two-dimensional Raman mapping. The latter showed that CNTs were adsorbed onto the root surfaces of alfalfa and wheat without significant uptake or translocation. Electron microscopy investigations of internalization were inconclusive owing to poor contrast, so Fe3O4-functionalized CNTs were prepared and studied using energy-filter mapping of Fe3O4. CNTs bearing Fe3O4 nanoparticles were detected in the epidermis of one wheat root tip only, suggesting that internalization was possible but unusual. Thus, alfalfa and wheat tolerated high concentrations of industrial-grade multiwalled CNTs, which adsorbed onto their roots but were rarely taken up.  相似文献   

8.
Abstract

The effects of as-produced and treated by HNO3(3M) carbon nanohorns on the microviscosity of rat erythrocyte membranes and the viscosity of the water-containing plasma protein matrix were investigated by the method of spin probes. Addition of nanohorns at the concentration of 100?μg/ml to a suspension of erythrocytes led to an increase in membrane microviscosity during 4?h (about 60% effect). In addition, it was shown that nanohorns also induced an increased polarity of the microenvironment for lipophilic probes in the outer layer of membrane phospholipids, as well as disorders in erythrocytes membranes. Addition of nanohorns to plasma led to a little decrease in the viscosity of water and protein matrix, apparently, due to its partial destruction, impacting especially albumin. Pristine and treated by HNO3(3M) acid nanohorns was found more cytotoxic than nanoparticles of oxidized graphene, and significantly less than carbon nanotubes, which are known to dramatically increase the microviscosity of the membranes of erythrocytes and disrupt their integrity.  相似文献   

9.
In this work, solid lipid nanoparticles loaded with cucurbitacin B (Cu B-SLNs) were prepared. It was found that the concentration of poloxamer 188 and soybean lecithin had effects on the mean particle size and size distribution. The zeta potentials were around ?33 mV. In vitro release studies showed a sustained release after a burst release. Internalization of Cu B into HepG2 cells could be enhanced by the encapsulation of SLN matrix. The IC50 values of Cu B-SLNs were lower than that of Cu B solution. Both free Cu B and Cu B-SLNs had effectively inhibited the tumor growth and displayed a dose-dependent anti-tumor efficacy. Cu B-SLNs at a dose of 0.11?mg/kg produced the greatest anti-tumor effects (53.3%), which was significant higher than Cu B solution (31.5%, p < 0.05). Cu B-SLNs showed a longer MRT in vivo. The AUC of Cu B-SLNs for tumor increased 3.5 –fold when compared to Cu B solution. The targeting efficiency of Cu B-SLNs was 1.94 times higher in liver as compared to that of Cu B solution. These results indicated that Cu-B SLNs could passively target the tumor with EPR effect, improve the therapeutic efficacy of Cu B, and reduce the doses.  相似文献   

10.
11.
A magnetic composite of multiwalls carbon nanotubes (MWNTs) decorated with Cobalt nanoparticles was synthesized successfully by a simple chemical precipitation and deoxidization method. The composite was analyzed by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The pattern of XRD indicated that MWNTs and Cobalt nanoparticles coexisted in the composite. The TEM images revealed that the Cobalt nanoparticles were distributed on the surface of the MWNTs, with the size ranging from 5 to 15 nm. The hysteresis loops of the decorated MWNTs were measured by a vibrating sample magnetometer (VSM), the ferromagnetic signature emerged with the saturated magnetization of 5.8 emu/g, and the coercive of 310 Oe.  相似文献   

12.
Abstract

A high-resolution transmission electron microscopy (HRTEM) study of multi-walled carbon nanotubes (MWCNTs) produced by a variant of the arc-discharge process is described. It is found that the nanotubes are frequently coated with a disordered carbon, and that the tubes are often incompletely formed, with nanohorn-like structures attached to the caps. This suggests that carbon nanohorns may be the precursors for the formation of nanotubes by arc-discharge. A possible mechanism for this process is suggested.  相似文献   

13.
In order to facilitate the intracellular delivery of therapeutic agents, a new type of liposomes–propylene glycol liposomes (PGL) were prepared, and their cell translocation capability in vitro was examined. PGL was composed of hydrogenated egg yolk lecithin, cholesterol, Tween 80 and propylene glycol. With curcumin as a model drug, characterization of loaded PGL were measured including surface morphology, particle size, elasticity, encapsulation efficiency of curcumin and physical stability. Using curcumin-loaded conventional liposomes as the control, the cell uptake capacity of loaded PGL was evaluated by detection the concentration of curcumin in cytoplasm. Compared with conventional liposomes, PGL exhibited such advantages as high encapsulation efficiency (92.74% ± 3.44%), small particle size (182.4?±?89.2?nm), high deformability (Elasticity index?=?48.6) and high stability both at normal temperature (about 25°C) and low temperature at 4°C. From cell experiment in vitro, PGL exhibited the highest uptake of curcumin compared with that of conventional liposomes and free curcumin solution. Little toxic effect on cellular viability was observed by methyl tetrazolium assay. In conclusion, PGL might be developed as a promising intracellular delivery carrier for therapeutic agents.  相似文献   

14.
In this article, a kind of conical cup-stacked carbon nanotubes (CSCNTs) grown by the microwave irradiation of the mixture of ferrocene and carbon black nanoparticles is reported. They are characterized by the long-cone shape, the nearly unchanged wall thickness and the huge hollow core. SEM and TEM analyses reveal that they are formed by the stacking of the truncated conical graphene layers precipitated from the surfaces of catalysts. The motions and coalescences of catalysts result in the increase of catalyst size during reaction. At the same time, the inner diameter of the truncated conical graphite layer precipitated from the surface of catalyst can increase with the catalyst size continuously. As a result, the as-grown CSCNTs have the conical hollow core and almost unchanged wall thickness. To the best of our knowledge, this kind of conical CSCNTs has been reported for the first time.  相似文献   

15.
Stretchable electronics are attracting intensive attention due to their promising applications in many areas where electronic devices undergo large deformation and/or form intimate contact with curvilinear surfaces. On the other hand, a plethora of nanomaterials with outstanding properties have emerged over the past decades. The understanding of nanoscale phenomena, materials, and devices has progressed to a point where substantial strides in nanomaterial‐enabled applications become realistic. This review summarizes recent advances in one such application, nanomaterial‐enabled stretchable conductors (one of the most important components for stretchable electronics) and related stretchable devices (e.g., capacitive sensors, supercapacitors and electroactive polymer actuators), over the past five years. Focusing on bottom‐up synthesized carbon nanomaterials (e.g., carbon nanotubes and graphene) and metal nanomaterials (e.g., metal nanowires and nanoparticles), this review provides fundamental insights into the strategies for developing nanomaterial‐enabled highly conductive and stretchable conductors. Finally, some of the challenges and important directions in the area of nanomaterial‐enabled stretchable conductors and devices are discussed.  相似文献   

16.
In recent years, colorimetric biosensing has attracted much attention because of its low cost, simplicity, and practicality. Since color changes can be read out by the naked eye, colorimetric biosensing does not require expensive or sophisticated instrumentation and may be applied to field analysis and point-of-care diagnosis. For transformation of the detection events into color changes, a number of smart materials have been developed, including gold nanoparticles, magnetic nanoparticles, cerium oxide nanoparticles, carbon nanotubes, graphene oxide, and conjugated polymers. Here, we focus on recent developments in colorimetric biosensing using these smart materials. Along with introducing the mechanisms of color changes based on different smart materials, we concentrate on the design of biosensing assays and their potential applications in biomedical diagnosis and environmental monitoring.  相似文献   

17.
18.
19.
The outstanding flexible field emission properties of carbon hybrid films made of vertically aligned N-doped carbon nanotubes grown on mechanically compliant reduced graphene films are demonstrated. The bottom-reduced graphene film substrate enables the conformal coating of the hybrid film on flexible device geometry and ensures robust mechanical and electrical contact even in a highly deformed state. The field emission properties are precisely examined in terms of the control of the bending radius, the N-doping level, and the length or wall-number of the carbon nanotubes and analyzed with electric field simulations. This high-performance flexible carbon field emitter is potentially useful for diverse, flexible field emission devices.  相似文献   

20.
The development of assemblies consisting of unencapsulated, sub-10-nm gold particles attached to individual carbon nanotubes (CNTs) with diameters of 2 nm is described. The assemblies are formed on the surface of a porous anodic alumina (PAA) template on which the CNTs (single- or double-walled) are grown by plasma-enhanced chemical vapor deposition. The Au nanoparticles are formed through an indirect evaporation technique using a silicon nitride membrane mask, and diffuse along the PAA surface into the regions containing CNTs. The nanoparticles bind relatively strongly to the CNTs, as indicated by observations of nanoparticles that are suspended over pores or that move along with the CNTs. This approach may provide a new method to functionalize CNTs for chemical or biological sensing and fundamental studies of nanoscale contacts to CNTs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号