首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work focuses on the performances of two immersed membrane bioreactors used for the treatment of easily biodegradable organic matter present in food industry effluents, for the purpose of water reuse. Two reactor functioning modes (continuous and sequencing) were compared in terms of organic carbon removal and of membrane permeability. For each working mode, pollutant removal was very high, treated water quality presented a low COD concentration (< 125 mg x L(-1)), no solids in suspension and low turbidity (< 0.5 NTU). The quality of the treated water (including germ removal) enabled its reuse on site. Moreover, by developing high biomass concentrations in the reactor, excess sludge production remained very low (< 0.1 gVSS x gCOD(-1)). The performances appeared slightly better for the continuous system (lower COD concentration in the effluent, < 50 mg x L(-1), and lower sludge production). In terms of filtration, a distinct difference was observed between continuous and sequencing systems; transmembrane pressure showed a small and constant evolution rate in continuous membrane bioreactor (CMBR) although it appeared more difficult to control in sequencing membrane bioreactor (SMBR) probably due to punctually higher permeate flow rate and modified suspension properties. The rapid evolution of membrane permeability observed in SMBR was such that more frequent chemical cleaning of the membrane system was required.  相似文献   

2.
The paper analyses the concept and performance of different configurations of compact UASB/TF systems, without the final clarification stage, in relation to the removal of organic matter. The experiments were carried out in two sets of UASB/TF systems operating without secondary clarifiers, as follows: (i) four shallow (2.50 m height) TFs, each one filled with a different packing material; and (ii) two deep (4.20 m height) TFs, one filled with polyethylene corrugated sheets and the other with mixed polyethylene and sponge sheets. For the conditions tested (different packing material in shallow and deep TF), the UASB/TF systems had consistently complied (90 to 100% of the results) with the Brazilian discharge standards regarding to BOD, COD, and TSS parameters. The average BOD, COD and TSS effluent concentrations stayed below 40 mg BOD L(-1), 100 mg COD L(-1) and 50 mg TSS L(-1), respectively. UASB/TF systems can constitute an attractive alternative for domestic wastewater treatment in small communities in developing countries, especially considering its operational simplicity and very low running costs.  相似文献   

3.
Quality of stormwater runoff from paved surfaces of two production sites.   总被引:1,自引:0,他引:1  
In order to investigate stormwater pollutant loads associated with different anthropic activities and the related pollutant build-up and wash-off processes, two pilot sites have been equipped in the Liguria Region (Italy) for monitoring first flush water quality in a gas station and an auto dismantler facility. TSS, COD, HCtot and heavy metals in dissolved form (Zn, Pb, Cu, Ni, Cd, Cr) have been analyzed during the monitoring campaign (started in February 2004). Stormwater flow and quality data collected in both production sites confirm that EMC values are significantly higher than those observed in an urban site. In the auto dismantler site, the EMC values for TSS, COD and HC largely exceed the standard values (EC 91/271). Contrary to urban surface runoff, scarce correlation between TSS and COD concentrations is observed in runoff from both production sites. The occurrence and nature of the pollutant load connected to first flush flows is discussed by inspection of the M(V)-curves that are provided for all monitored water quality parameters. Significant first flush phenomenon is evidenced for TSS and HC, while such clear behavior doesn't emerge for heavy metals. Hydrologic and climatic characteristics (ADWP, rainfall intensity/depth) appear to scarcely affect the build-up and wash-off processes.  相似文献   

4.
A pilot-scale dual-stage membrane bioreactor (dsMBR) incorporating two ultra-filtration (UF) side-stream membrane modules was designed, constructed, operated and evaluated on-site for treating high-strength textile effluent. The effluent stream was characterised by a COD range of between 45 to 2,820 mg/L and an average BOD of 192.5 mg/L. The dsMBR achieved an average COD reduction of 75% with a maximum of 97% over the 9 month test period. The COD concentration obtained after dsMBR treatment averaged at 190 mg/L, which was well within the discharge standard. The average reduction in turbidity and TSS were 94% and 19.6%, respectively, during the UF-MBR stage of the system. Subsequent treatment of the UF-permeate with nanofiltration (NF) and reverse osmosis (RO) removed both the residual colour and remaining salt. A consistent reduction in the color of the incoming effluent was evident. The ADMI was reduced from an average of 659 to ~20, a lower ADMI and colour compared to the potable water. An average conductivity rejection of 91% was achieved with conductivity being reduced from an average of 7,700 to 693 μS/cm and the TDS reduced from an average of 5,700 to 473 mg/L, which facilitated an average TDS rejection of 92%.  相似文献   

5.
The use of a membrane bioreactor (MBR) for removal of organic substances and nutrients from slaughterhouse plant wastewater was investigated. The chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) concentrations of slaughterhouse wastewater were found to be approximately 571 mg O2/L, 102.5 mg/L, and 16.25 mg PO4-P/L, respectively. A submerged type membrane was used in the bioreactor. The removal efficiencies for COD, total organic carbon (TOC), TP and TN were found to be 97, 96, 65, 44% respectively. The COD value of wastewater was decreased to 16 mg/L (COD discharge standard for slaughterhouse plant wastewaters is 160 mg/L). TOC was decreased to 9 mg/L (TOC discharge standard for slaughterhouse plant wastewaters is 20 mg/L). Ammonium, and nitrate nitrogen concentrations of treated effluent were 0.100 mg NH4-N/L, and 80.521 mg NO3-N/L, respectively. Slaughterhouse wastewater was successfully treated with the MBR process.  相似文献   

6.
The soft drink production is an important sector in the manufacturing industry of Mexico. Water is the main source in the production of soft drinks. Wastewater from bottle washing is almost 50% of the total wastewater generated by this industry. In order to reduce the consumption of water, the water of the last bottle rinse can be reused in to the bottle pre-rinse and pre-washing cycles. This work presents the characterization of the final bottle washing rinse discharge and the treatability study for the most appropriate treatment system for recycling. Average characteristics of the final bottle wash rinse were as follows: Turbidity 40.46 NTU, COD 47.7 mg/L, TSS 56 mg/L, TS 693.6 mg/L, electrical conductivity 1,194 microS/cm. The results of the treatability tests showed that the final rinse water can be used in the pre-rinse and pre-washing after removing the totality of the suspended solids, 80% of the COD and 75% of the dissolved solids. This can be done using the following treatment systems: filtration-adsorption-reverse osmosis, or filtration-adsorption-ion exchange. The installation of these treatment techniques in the soft drink industry would decrease bottle washing water consumption by 50%.  相似文献   

7.
A comparison of two different medium scale MBRs (ultrafiltration and microfiltration) using respirometric methods has been achieved. The ultrafiltration membrane plant (0.034 microm pore size) maintained recirculation sludge flow at seven times the influent flow, and membranes were backwashed every 5 min and chemically cleaned weekly. The microfiltration membrane plant (0.4 microm pore size) maintained recirculation sludge flow at four times the influent flow, membrane-relax was applied after the production phase and membranes were chemically cleaned in the event of high trans-membrane pressure. Both technologies showed a similar performance with regard to heterotrophic kinetic and stoichiometric parameters and organic matter effluent concentrations. The influent was characterized by means of its COD fractions and the average removal percentages for COD concentrations were around 97% for both plants in spite of influent COD fluctuation, temperature variations and sludge retention time (SRT) evolution. Both SRT evolution and temperature affect the heterotrophic yield (Y(H)) and the decay coefficient (bH) in the same range for both plants. Y(H) values of over 0.8 mg COD/mg COD were obtained during the unsteady periods, while under steady state conditions these values fell to less than 0.4 mg COD/mg COD. bH by contrast reached values of less than 0.05 d(-1).  相似文献   

8.
水解/MBR工艺处理低浓度煤化工废水的研究   总被引:1,自引:0,他引:1  
应用水解/MBR工艺对低浓度煤化工废水的处理进行了研究,实验结果表明,在合适的条件下膜出水水质:COD为70.23~96.65 mg/L,浊度为0.10~0.32NTU,色度为23~38度,氨氮为1.3~4.8 mg/L,满足国家二级排放标准.通过扫描电镜清晰的观察到:膜外表面的污泥层及宽度不等的裂缝和泥孔,膜内表面没有受到污染.推测膜外表面呈凝胶状的污染物质是胞外聚合物.  相似文献   

9.
This study focuses on the practical application of high concentration powdered activated carbon coupled membrane bio-reactor to domestic wastewater reclamation. The study was conducted in three parts, such as analysis of secondary domestic wastewater effluent, design and operation parameter evaluation and reclaimed water quality estimation for stream restoration. The organic concentration was 25.2-80.2 mgCOD(Cr)/L for the effluent of three domestic wastewater treatment plants. Around 50-75% of the COD was low molecular substances less than 1,000 which were quite biodegradable. The sawdust PAC was estimated to be proper adsorbent for the organics in the secondary effluents. Its Freundlich constant, K value was 5.847 and 1/n, 0.36. Using a system consists of single reactor with high concentration PAC (80 g/L) and submerged hollow fiber MF membrane module with nominal pore size of 0.1 microm, design and operation parameters were obtained, such as HRT of the bioreactor (2.5 hr), PAC concentration (80 g/L), the initial flux (less than 0.5 m/day) and intermittent suction cycle (12 min. suction and 3 min. idling). Organic removal by the system was high enough to produce reclaimed water for urban stream restoration The effluent organic concentration was at the level of 2 mg/L in terms of TOC (around 5 mg/L as COD(Cr)). Substances with molecular weight cut off < 1,000 were removed mostly by adsorption and biodegradation. Those above 1,000 were rejected at PAC cake layer on the membrane and gradually degraded by microorganisms during extended contact.  相似文献   

10.
我国当前以实现分流制为规划指导原则,分流制下工业园区雨水径流污染对水环境存在较大潜在影响。在此背景下采用SWMM软件模拟降雨和实地调研相结合的方法,分析湖塘园区降雨径流的污染负荷。结果表明:0.25年一遇的降雨径流质量浓度峰值ρ(TN)=6.01 mg/L,ρ(TP)=0.02 mg/L,ρ(COD)=125.21 mg/L,该降雨重现期下的TN和COD浓度均远劣于GB 3838—2002《地表水环境质量标准》的Ⅴ类水标准;随着降雨重现期增大,径流污染物浓度峰值会进一步提高。排入受纳水体采菱港的污染物总量比例:径流中TN占园区总TN(径流+点源)排放量的25.9%,径流中TP占4.4%,COD占28.0%,COD、TN径流污染量占整个园区污染总量的比重较大。结合湖塘园区排水系统的实地调研,建议加强园区初期雨水截留、推广园区中水回用和推进园区与企业排口设置规范化,以有效降低园区雨水径流对周边水环境的影响。  相似文献   

11.
This paper assesses the chemical and bacteriological quality of drinking water in three districts of the Chittagong Hill Tract (CHT), a region within Bangladesh. Drawing water samples from tubewells, chharas /springs, lakes/canals, wells, and ponds, analysis was done on pH, alkalinity, arsenic, phosphate (PO 4 ), sulphate (SO 4 ), ammonium-nitrogen, conductivity, and faecal coliform bacteria. The PO 4 and SO 4 concentrations were within the permissible limits. In contrast, 100% of the water samples contained alkalinity below 400 mg/l. Varied proportions, ranging from 14% to 50%, of tubewells, chharas /springs, lakes/canals, and well water had a pH of less than 6.5. Three out of 16 (18.8%) tubewell water samples tested had arsenic contamination and 18% of the chhara /spring and 11% of the well water samples had an unacceptable level of conductivity. In addition, faecal coliform bacteria contaminated almost all sources of water, ranging from 81% to 100%. The water used for drinking in CHT in general is harmful for health.  相似文献   

12.
The performance of an ultra-compact biofilm reactor (UCBR) treating domestic wastewater (DWW) collected from a local water reclamation plant; and gradually shifting to a mono-type carbon source synthetic wastewater (SWW) combined with DDW (CWW) and finally SWW; was investigated in this study. The total COD concentrations of influent DWW and CWW/SWW were 413.6 ± 80.8 mg/L and 454.9 ± 51.3 mg/L, respectively. The UCBR was able to achieve average total COD removal efficiencies of 70 ± 10% and 80 ± 4% for DWW and SWW respectively. The total COD concentrations of the effluent of DWW and CWW/SWW were 122.5 ± 44.4 mg/L and 89.7 ± 10.3 mg/L, respectively. These observations suggested that heterotrophs in the UCBR system were able to better assimilate and remove carbon of mono-type SWW compared to diverse carbon sources such as DWW; although the influent soluble COD concentrations of the SWW were higher than those of the DWW. However, the effluent NH(4)(+)-N concentrations for both types of wastewater were rather similar, <3.0 mg/L; although the influent NH(4)(+)-N concentrations of the DWW were 1.5 times those of the SWW.  相似文献   

13.
The paper reports the results of an investigation on a H-SSF constructed wetland for tertiary treatment in a small community located in eastern Sicily, Italy. The system is designed to reuse wastewater for the irrigation of olive orchards covering about 150 hectares. From March 2001 to September 2005, wastewater samples were collected and the following chemical-physical parameters were determined according to Standard Methods: temperature, pH, EC, DO, TSS (105degrees C), BOD5, COD, TN, TP. The following microbiological parameters were also evaluated: total coliforms, faecal coliforms, Escherichia coli, faecal streptococci, Salmonella, helminth eggs. Mean removal efficiencies ranged from 77 to 92% (TSS), 37 to 72% (BOD5), 51 to 79% (COD), 97 to 99.5% (E. coli). Removal efficiency of Salmonella and helminth eggs was always 100% in all samples; however, only 150% of total samples matched the limit of E. coli (< 50 CFU/100 mL) fixed by Italian legislation for wastewater reuse.  相似文献   

14.
This research project aimed to determine the technologically feasible and applicable wastewater treatment systems which will be constructed to solve environmental problems caused by small communities in Turkey. Pilot-scale treatment of a small community's wastewater was performed over a period of more than 2 years in order to show applicability of these systems. The present study involves removal of organic matter and suspended solids in serially operated horizontal (HFCW) and vertical (VFCW) sub-surface flow constructed wetlands. The pilot-scale wetland was constructed downstream of anaerobic reactors at the campus of TUBITAK-MRC. Anaerobically pretreated wastewater was introduced into this hybrid two-stage sub-surface flow wetland system (TSCW). Wastewater was first introduced into the horizontal sub-surface flow system and then the vertical flow system before being discharged. Recirculation of the effluent was tested in the system. When the recirculation ratio was 100%, average removal efficiencies for TSCW were 91 +/- 4% for COD, 83 +/- 10% for BOD and 96 +/- 3% for suspended solids with average effluent concentrations of 9 +/- 5 mg/L COD, 6 +/- 3 mg/L BOD and 1 mg/L for suspended solids. Comparing non-recirculation and recirculation periods, the lowest effluent concentrations were obtained with a 100% recirculation ratio. The effluent concentrations met the Turkish regulations for discharge limits of COD, BOD and TSS in each case. The study showed that a hybrid constructed wetland system with recirculation is a very effective method of obtaining very low effluent organic matter and suspended solids concentrations downstream of anaerobic pretreatment of domestic wastewaters in small communities.  相似文献   

15.
Substantial reductions in dissolved oxygen concentration in freshwaters can negatively affect aquatic biota. Thus, existing regulatory criteria are designed to avoid environmental conditions that cause acute lethality, thereby reducing the likelihood of biological impairment. In North America, dissolved oxygen (DO) guidelines for protecting aquatic life assume that pore water and water column DO are correlated, with pore water values expected to be on average ≤3 mg/L below water column values. Our study assessed the validity of this assumption during the winter period of ice cover in a large, northern river ecosystem (Wapiti River, Alberta, Canada). We investigated the relationship between water column and pore water DO concentrations and examined whether this relationship was affected by industrial and municipal effluents. Water column DO fell from near saturation during open water periods to 80–84% under winter ice cover. DO concentrations in the pore water were significantly lower than in the water column at reference and effluent‐exposed sampling sites. Pore water DO values ranged widely from 0.27 to 13.28 mg/L. In contrast, water column DO concentrations (10.25–13.60 mg/L) were more narrowly distributed over the same period. Indeed, differences between winter pore water and water column DO were often as large as 9–12 mg/L and, notably, were significantly greater than the 3 mg/L difference upon which North American guidelines are based. Consequently, under‐ice DO concentrations of river pore water could not be accurately predicted from water column DO alone. Risk factors that may increase the potential for pore water DO to be more than 3 mg/L lower than water column values include the input of oxygen poor groundwater, infilling of the streambed with small inorganic and organic particles, water exchange rates between the water column and the streambed and effluent discharges that raise nutrient concentrations and biochemical oxygen demand. Given that low pore water DO was evident even in undeveloped reference sites, future work must establish the ecological relevance of chronic exposure to low, pore water DO and its impact on river biota. © 2016 Environment and Climate Change Canada. River Research Application StartCopTextStartCopText© 2016 John Wiley & Sons, Ltd.  相似文献   

16.
This paper presents the behaviour of a full-scale expanded bed reactor (160 m3) with overlaid anaerobic and aerobic zones used for municipal wastewater treatment. The research was carried out in two experimental steps: anaerobic and anaerobic-aerobic conditions, and the experimental results presented in this paper refer to four months of reactor operation. In the anaerobic condition, after inoculation and 60 days of operation, the reactor treating 3.40 kg CODm(-3)d(-1) for thetaH of 2.69 h, reached mean removal efficiencies of 76% for BOD, 72% for COD, and 80% for TSS, when the effluent presented mean values of 225 mg.L(-1) of COD, 98 mg.L(-1) of BOD and 35 mg.L(-1) of TSS. Under these conditions, for nitrogen loading of 0.27 kgN.m(-3)d(-1), the reactor generated an effluent with mean N-org. of 8 mg.L(-1) and N-ammon. of 37 mg.L(-1), demonstrating high potential of ammonification. For the anaerobic-aerobic condition (118th day) the system was operated with thetaH of 5.38 h presented mean removal efficiencies of 84% for BOD, 79% for COD, 76% for TSS, and 30% for TKN. The reactor's operation time was less than two months, which was not long enough to reach nitrification. Regarding the obtained results, this research confirmed that this reactor is configured as a flexible and adequate alternative for the treatment of sewage, requiring relatively small area and only thetaH of 10 h that can be adjusted to the local circumstances.  相似文献   

17.
Runoff quality and pollution loadings from a tropical urban catchment.   总被引:1,自引:0,他引:1  
Runoff quality draining from 17.14 km2 urban catchment in Johor Bahru, Malaysia, was analysed. The land-use consists of residential (30.3%), agricultural (27.3%), open space (27.9%), industrial (8.1%) and commercial (6.4%) areas. Three storm events were sampled in detail. These storms produced stormflow between 0.84 mm and 27.82 mm, and peakflow from 2.19 m3/s to 42.36 m3/s. Water quality showed marked variation during storms especially for TSS, BOD and COD with maximum concentrations of 778 mg/l, 135 mg/l and 358 mg/l, respectively. Concentrations of TOC, DOC, NH3-N, Fe and level of colour were also high. In general, the river quality is badly polluted and falls in Class V based on the Malaysian Interim National Water Quality Standards. Event Mean Concentrations (EMC) for various parameters varied considerably between storms. The largest storm produced higher EMC for TSS, NO3-N and SS whereas the smaller storms tend to register higher EMC for BOD, COD, NH3-N, TOC, Ca, K, Mg, Fe and Zn. Such variations could be explained in terms of pollutant availability and the effects of flushing and dilution. Based on a three-month average recurrence interval (ARI) of rainfall, the estimated event loadings (ton/ha) of TSS, BOD, COD, TOC, NH3-N and NO3-N were 0.055, 0.016, 0.012, 0.039, 0.010, 0.0007 and 0.0002, respectively. Heavy metals present in trace quantities. Storms with 3 months ARI could capture about 70% of the total annual loads of major pollutants.  相似文献   

18.
以电导率为分质指标,对纱线筒染废水进行“清浊分质”收集,并对收集到的轻废水进行接触氧化、超滤、反渗透处理;对重废水进行水解酸化、接触氧化、混凝沉淀处理,最后对轻废水减缓膜污染方面进行优势分析。结果表明:轻废水经处理后,ρ( COD )<17 mg/L、色度1倍、ρ( Fe3+)≤0.1 mg/L、ρ( Mn)=0.05~0.09 mg/L、硬度为50~80 mg/L,水质优于印染用水要求,并且能够减缓膜系统污染速率;重废水经处理后,ρ( COD )<50 mg/L、ρ( NH3-N )=1.71~2.93 mg/L、色度小于50倍,满足重点工业行业废水排放要求;表明采用以电导率为指标的废水分质收集与处理方法,自动化程度高、分质准确,有效缓解了后续处理负荷,减缓了膜污染,提高了废水回用率。  相似文献   

19.
This paper describes a two-year performance evaluation of four different constructed wetland (CW) treatment systems designed by IRIDRA Srl, located in central Italy. All four CW systems were established to treat wastewater effluent from different tourist activities: (1) one single-stage CW for secondary treatment of domestic wastewater (30 p.e.) at a holiday farm site; (2) a hybrid compact system consisting of two stages, a horizontal flow (HF) system followed by a vertical flow (VF) system for the secondary treatment of effluent from a 140 p.e. tourist resort; (3) a single-stage vertical flow (VF) CW for a 100 p.e. mountain shelter; and (4) a pair of single-stage, HF CWs for the secondary treatment of segregated grey and black water produced by an 80 p.e. camping site. These tourism facilities are located in remote areas and share some common characteristics concerning their water management: they have high variability of water consumption and wastewater flow, depending on the season, weather and weekly regularities; they have no connection to a public sewer and most sites are located in a sensitive environment. Total suspended solids (TSS), chemical oxygen demand (COD), biochemical oxygen demand (BOD5), ammonium (N-NH4+), nitrate (N-NOx), total nitrogen (Ntot), total phosphorus (Ptot), total coliform (TC), faecal coliform (FC), E. coli removal efficiencies for all four CW systems are presented. The results from this study demonstrate the potential of CWs as a suitable technology for treating wastewater from tourism facilities in remote areas. A very efficient COD reduction (83-95%) and pathogen elimination (3-5 logs) have been achieved. Furthermore, the CWs are easily maintained, robust (not sensitive to peak flows), constructed with local materials, and operate with relatively low cost.  相似文献   

20.
Wine production is seasonal, and thus the wastewater flow and its chemical oxygen demand (COD) concentrations greatly vary during the vintage and non-vintage periods, as well as being dependant on the winemaking technologies used, e.g. red, white or special wines production. Due to this seasonal high variability in terms of organic matter load, the use of membrane biological reactors (MBR) could be suitable for the treatment of such wastewaters. MBR offers several benefits, such as rapid start up, good effluent quality, low footprint area, absence of voluminous secondary settler and its operation is not affected by the settling properties of the sludge. A pilot scale hollow fibre MBR system of 220 L was fed by adequately diluting white wine with tap water, simulating wastewaters generated in wineries. The COD in the influent ranged between 1,000 and 4,000 mg/L. In less than 10 days after the start up, the system showed a good COD removal efficiency. The COD elimination percentage was always higher than 97% regardless of the organic loading rate (OLR) applied (0.5-2.2 kg COD/m3 d), with COD concentrations in the effluent ranging between 20 and 100 mg/L. Although the biomass concentration in the reactor increased from 0.5 to 8.6 g VSS/L, the suspended solids concentration in the effluent was negligible. Apparent biomass yield was estimated in 0.14 g VSS/g COD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号