首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To prevent carbon/carbon (C/C) composites from oxidation between room temperature and 1500 °C, a dense SiC nanowire-toughened SiC oxidation resistant coating was prepared by a two-step technique composed of chemical vapor deposition and pack cementation. SiC nanowires could effectively baffle the propagation of the microcracks and avoid the formation of the through-thickness microcracks in the original coating. The results indicated that, after introducing SiC nanowires, the coefficient of thermal expansion of the coating was decreased between 100 and 1500 °C, and the oxidation protective ability for the coated C/C composites was improved largely between room temperature and 1500 °C.  相似文献   

2.
To improve the oxidation resistance of carbon/carbon (C/C) composites, a C/SiC/MoSi2–Si multilayer oxidation protective coating was prepared by slurry and pack cementation. The microstructure of the as-prepared coating was characterized by scanning electron microscopy, X-ray diffraction and energy dispersive spectroscopy. The isothermal oxidation and erosion resistance of the coating was investigated in electrical furnace and high temperature wind tunnel. The results showed that the multilayer coating could effectively protect C/C composites from oxidation in air for 300 h at 1773 K and 103 h at 1873 K, and the coated samples was fractured after erosion for 27 h at 1873 K h in wind tunnel. The weight loss of the coated specimens was considered to be caused by the formation of penetration cracks in the coating. The fracture of the coated C/C composites might result from the excessive local stress in the coating.  相似文献   

3.
针对C/SiC复合材料的防氧化要求,在材料表面通过等离子喷涂法制备了莫来石/硅酸钇的双层涂层,对涂层的形貌、组成和结构及其与基底的结合强度进行了表征,开展了1500℃、1h静态空气氧化实验,对抗氧化涂层的结构演变进行了分析,并对C/SiC复合材料氧化实验前后的质量和力学性能变化进行了研究。结果表明,莫来石/硅酸钇双层涂层抗氧化作用较好,涂层C/SiC复合材料的强度保留率达95.3%。  相似文献   

4.
A self-sealing Si–Mo–B oxidation resistance coating was prepared on C/SiC coated carbon/carbon (C/C) composites by slurry and high temperature treatment method. The oxidation resistance of the coating increases at 1173 K and first increases then decreases at 1873 K with the increase of B content from 0 to 20 wt.%. The C/SiC/gradient Si–Mo–B multilayer coating can protect C/C composite from oxidation for 100 h at 1173 K and 125 h at 1873 K. The good oxidation resistance of the coating in broad temperature range could be attributed to its good self-sealing property.  相似文献   

5.
An amorphous boron carbide (a-BC) coating was prepared by LPCVD process from BCl3-CH4-H2-Ar system. XPS result showed that the boron concentration was 15.0 at.%, and carbon was 82.0 at.%. One third of boron was distributed to a bonding with carbon and 37.0 at.% was dissolved in graphite lattice. A multiple-layered structure of CVD SiC/a-BC/SiC was coated on 3D C/SiC composites. Oxidation tests were conducted at 700, 1000, and 1200 °C in 14 vol.% H2O/8 vol.% O2/78 vol.% Ar atmosphere up to 100 h. The 3D C/SiC composites with the modified coating system had a good oxidation resistance. This resulted in the high strength retained ratio of the composites even after the oxidation.  相似文献   

6.
To protect carbon/carbon (C/C) composites against oxidation, a Si–Mo coating was prepared on C/SiC-coated C/C composites by a simple slurry method. The microstructure of the coating was characterized by X-ray diffraction, scanning electron microscopy and Raman spectra. Results showed that the coating was mainly composed of SiC, MoSi2 and Si. It could protect C/C composites from oxidation at 1873 K in air for 300 h and withstand 13 thermal cycles between room temperature and 1873 K. The excellent oxidation and thermal shock resistance of the coating was attributed to the formation of dense SiO2 glass at high temperature. The volatilization of MoO3 and SiO2 at 1873 K was the main reason of the weight loss of the coated C/C composites.  相似文献   

7.
High-temperature application above 1600 °C of C/SiC composites requires evaluation of the ablation properties. The C/SiC composites were prepared by low pressure chemical vapor infiltration using CH3SiCl3 as precursor. As-prepared C/SiC composites were ablated by oxy-acetylene flame with the temperature of 2900 and 3550 °C. Above 3550 °C, subliming of carbon fiber and silicon carbide matrix was the main ablation behaviour. At 2900 °C, thermal decomposition and oxidation of SiC matrix were the main ablation behaviour. A carbon coating resulted from the pyrolysis of the acetylene prevented the C/SiC from oxidizing dramatically.  相似文献   

8.
为了提高C/C复合材料的抗氧化性,在C/C复合材料基体上制备了ZrB2-MoSi2/SiC涂层。采用包埋法制备SiC中间层,采用喷涂法制备ZrB2-MoSi2外涂层。用XRD和SEM分别分析、测试所制备涂层的物相组成和显微结构,研究涂层复合材料的高温抗氧化性能。结果表明:C/C复合材料的外涂层由ZrB2、MoSi2和SiC三相组成;在1273K和1773K下分别氧化30h和10h后ZrB2-MoSi2/SiC涂层试样的质量损失分别为5.3%和3.0%,涂层表面长有纳米SiC晶须。C/C复合材料ZrB2-MoSi2/SiC涂层具有自愈合特性和良好的高温抗氧化性能。  相似文献   

9.
To protect carbon/carbon (C/C) composites against oxidation, a MoSi2 outer coating was prepared on pack-cementation SiC coated C/C composites by a hydrothermal electrophoretic deposition. The phase composition, microstructure and oxidation resistance of the prepared MoSi2/SiC coatings were investigated. Results show that hydrothermal electrophoretic deposition is an effective route to achieve crack-free MoSi2 outer coatings. The MoSi2/SiC coating can protect C/C composites from oxidation at 1773 K for 346 h with a weight loss of 2.49 mg cm−2 and at 1903 K for 88 h with a weight loss of 5.68 mg cm−2.  相似文献   

10.
To improve the oxidation resistance of SiC coating produced by pack cementation for carbon/carbon composites, a modified SiC coating has been produced by one-step pack cementation by adding ferrocene in pack compositions. The as-received coating exhibited a dual-layer dense structure, and oxidation protective ability of SiC coating could be improved by introducing ferrocene. The modified coating could protect C/C composites from oxidation for more than 100 h at 1673 K in air. The weight loss of the coated C/C composites was considered to arise from deflection of penetrating cracks formed in outer layer from inner layer to C/C matrix.  相似文献   

11.
ZrB2–SiC–Si/B-modified SiC coating was prepared on the surface of carbon/carbon (C/C) composites by two-step pack cementation. The coating could efficiently provide protection for C/C composites from oxidation and ablation. The improvement of oxidation resistance was attributed to the self-sealing property of the multilayer coating. A dense glassy oxide layer could afford the high temperature up to 2573 K and efficiently protect C/C composites from ablation.  相似文献   

12.
To prevent carbon/carbon (C/C) composites from oxidation, a self-sealing multilayer oxidation resistant coating including a C/SiC gradient inner layer, a Si-Mo-B middle layer and a glass exterior layer was prepared by pack cementation and slurry method. Scanning electron microscopy and X-ray diffraction were used to analyze the microstructure and phase composition of the as-prepared coating. The isothermal and thermal shock oxidation resistance of the coating was also investigated. The results showed that the multilayer coating exhibited excellent oxidation resistance from room temperature to 1873 K. It could effectively protect C/C composites for 100 h at 1173 K and 150 h at 1873 K, and endure 40 thermal cycles between 1873 K and room temperature. The excellent oxidation and thermal shock resistance could be attributed to the gradient structure and the self-sealing property of the multilayer coating.  相似文献   

13.
To prevent carbon/carbon (C/C) composites from oxidation, a multilayer oxidation resistant coating was prepared. The inner SiC coating was prepared by pack cementation, and the outer SiC-MoSi2 three-layer coating was obtained by slurry coating using silicon-sol as the caking agent. X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy were used to analyze the phase, microstructure and element distribution of the as-prepared coating. The results show that, the as-received multilayer coating has a crack-free structure with the thickness of about 300 μm. It is provided with excellent oxidation resistance from room temperature to 1500 °C in air and can protect C/C composites from oxidation for more than 120 h at 900 °C and more than 110 h at 1500 °C in air. The weight loss of the coated samples during oxidation tests mainly resulted from the oxidation of Mo5Si3 and the volatilization of SiO2 in the coating.  相似文献   

14.
Oxidation protective Si-Mo coatings were prepared by pack cementation on the surface of C/SiC coated carbon/carbon composites. The influences of Mo/Si mass ratio in the pack powders on the microstructure and oxidation resistance of the coating were investigated. It showed that with the Mo/Si ratio increasing from 0.1 to 0.4, the MoSi2 proportion and the dimension of cracks in the coating increased, and the oxidation protective ability of the coated specimens firstly increased and then decreased. The coating...  相似文献   

15.
SiC 涂层对不同碳基体氧化防护行为的研究   总被引:4,自引:3,他引:1  
为了提高碳材料的抗氧化性能,采用料浆烧结法在石墨和C/C复合材料上制备了SiC 抗氧化涂层.测试了SiC涂层在1200℃的高温下对不同碳基体的氧化防护能力,利用扫描电子显微镜 (SEM)、X-射线衍射仪(XRD)对涂层结构进行分析.结果表明:SiC涂层对不同碳材料的抗氧化防护行为有很大差异,在1200℃的高温下SiC涂层对石墨具有较好的抗氧化性能,而对C/C复合材料的氧化防护性能较差.  相似文献   

16.
An in situ bamboo-shaped SiC nanowire-toughened Si–Cr coating was prepared on the carbon/carbon composites by pack cementation and heat treatment with ferrocene as the catalyst. The microstructures and oxidation behavior of the coating were investigated. Results showed that the coating had a dense microstructure, without the penetrating microcracks, which was primarily attributed to the unusual toughening effect of the bamboo-shaped nanowires resulting from the mechanical interlocking between the nodes and the matrix. The coating exhibited good oxidation protection ability at high temperature. The weight gain of the samples was 0.79% after isothermal oxidation at 1500 °C for 185 h.  相似文献   

17.
In order to improve the oxidation resistance of carbon/carbon (C/C) composites, a ZrSiO4 coating on SiC pre-coated C/C composites was prepared by a hydrothermal electrophoretic deposition process. Phase compositions and microstructures of the as-prepared ZrSiO4/SiC coating were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS). The anti-oxidation property and failure mechanism of the multi-layer coating were investigated. Results show that hydrothermal electrophoretic deposition is an effective route to prepare crack-free ZrSiO4 outer coatings. The multi-layer coating obviously exhibits two-layer structure. The inner layer is composed of SiC phase and the outer layer is composed of ZrSiO4 phase. The bonding strength between the outer layer coatings and C/C–SiC substrate are 30.38 MPa. The ZrSiO4/SiC coating displays excellent oxidation resistance and can protect C/C composites from oxidation at 1773 K for 332 h with a mass loss rate of only 0.48 × 10− 4 g/cm2·h. The mechanical properties of the specimens are 84.36 MPa before oxidation and 68.29 MPa after oxidation. The corresponding high temperature oxidation activation energy of the coated C/C composites at 1573–1773 K is calculated to be 119.8 kJ/mol. The oxidation process is predominantly controlled by the diffusion rate of oxygen through the ZrSiO4/SiC multi-coating. The failure of the coating is due to the formation of penetrative holes between the SiC bonding layer and the C/C matrix at 1773 K.  相似文献   

18.
To improve the oxidation resistance of carbon/carbon (C/C) composites in air at high temperatures, a SiC–MoSi2/ZrO2–MoSi2 coating was prepared on the surface of C/C composites by pack cementation and slurry method. The microstructures and phase compositions of the coated C/C composites were analyzed by scanning electron microscopy and X-ray diffraction, respectively. The result shows that the SiC–MoSi2/ZrO2–MoSi2 coating is dense and crack-free with a thickness of 250–300 μm. The preparation and the high temperature oxidation property of the coated composites were investigated. The as-received coating has excellent oxidation protection ability and can protect C/C composites from oxidation for 260 h at 1773 K in air. The excellent anti-oxidation performance of the coating is considered to come from the formation of ZrSiO4, which improves the stability of the coating at high temperatures.  相似文献   

19.
王富强  陈建  张智  谢栋  崔红 《表面技术》2022,51(2):249-258, 305
目的提高C/C复合材料在超高温下的抗烧蚀性能。方法采用化学气相沉积法,在C/C复合材料表面制备SiC过渡层,然后以惰性气体保护等离子喷涂工艺在带有SiC过渡层的C/C材料表面制备W涂层,研究所制备的W-SiC-C/C复合材料的微观形貌与结构特征。以200 kW超大功率等离子焰流,考核W-SiC-C/C材料的抗烧蚀性能,并与无涂层防护的C/C材料进行对比分析。结果W涂层主要为层状的柱状晶结构。W涂层与SiC过渡层、过渡层与基体界面呈镶嵌结构,结合良好。SiC过渡层阻止了W、C元素相互迁移与反应。在驻点压力为4.5 MPa、温度约5000 K、热流密度为36 MW/m2的烧蚀条件下,当烧蚀时间小于10 s时,涂层对C/C材料起到了较好的保护作用,W涂层发生氧化烧蚀,基体未发现烧蚀,平均线烧蚀率为0.0523 mm/s;当烧蚀时间超过15 s后,涂层防护作用基本失效,基体C/C材料发生烧蚀现象。结论以W涂层、SiC过渡层为防护的C/C复合材料,能够适用于短时间超高温的烧蚀环境,如固体火箭发动机等。W涂层的熔融吸热、氧化耗氧以及SiC过渡层的氧化熔融缓解涂层热应力和氧扩散阻碍的联合作用,提高了C/C材料的抗烧蚀性能。  相似文献   

20.
SiC/SiC–YAG–YSZ coatings were prepared by pack cementation, chemical vapor deposition and slurry painting on carbon/carbon (C/C) composites. The microstructures and oxidation behavior of coatings were investigated. The results show that the coatings displayed good oxidation and thermal shock resistance due to a dense glassy layer with silicates formed on the coating of SiC–YAG–YSZ. The weight gain rate of coated C/C composites was 1.77% after oxidation for 150 h at 1773 K. SiC in outer coating can promote the formation of oxygen diffusion barrier and lead to the optimum oxidation resistance for the coatings, compared with YSZ and YAG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号