首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Oxide films formed at 700 °C on Co–29Cr–6Mo alloy were characterised extensively to improve the corrosion resistance of the alloy to liquid Al, enabling its use in Al die-casting moulds. Film of duplex layer consisting of an outer CoO-rich layer and an inner Cr2O3-rich layer was observed in samples subjected to oxidation for 4 h. With an increase in duration of oxidation, CoO was gradually replaced by Cr2O3, resulting in a single-layered oxide film dominantly composed of Cr2O3. The oxide film evolved with duration of oxidation treatment indicating the possibility of optimising films for Al die-casting moulds.  相似文献   

2.
Stress corrosion cracking (SCC) susceptibility of austenitic Fe18Cr10Mn alloys with 0.3N, 0.6N and 0.3N0.3C was investigated in aqueous chloride environment using a slow strain rate test method. The SCC susceptibility of Fe18Cr10Mn alloys in 2 M NaCl solution at 50 °C under constant anodic potential condition decreased with increase in N content from 0.3 to 0.6 wt%, and with addition of 0.3 wt% C to the Fe18Cr10Mn0.3N alloys. The present study strongly suggested that the beneficial effects of N and C on the SCC behavior of Fe18Cr10Mn alloys would be associated with the resistance to pitting corrosion initiation and the repassivation kinetics.  相似文献   

3.
The stress corrosion cracking (SCC) behavior of Fe18Cr10Mn1Ni(0.3–0.8)N alloys was investigated in aqueous NaCl environment by using slow strain rate test method, and the results were compared to those of Ni-free counterparts. The addition of N tended to improve the SCC resistance of Fe18Cr10Mn- and Fe18Cr10Mn1Ni-based alloys. The alloying Ni magnified the beneficial effect of N on the SCC susceptibility and, eventually, the Fe18Cr10Mn0.8N alloy was immune to SCC in 2 M NaCl solution at 50 °C. The SCC behavior of the present alloys was found to be closely related to the repassivation tendency and the resistance to pitting corrosion.  相似文献   

4.
The Ti(C, N)-based cermets with different Cr3C2 addition were prepared and the effects of Cr3C2 addition on the microstructure and properties of cermets were discussed. The corrosion behavior of the cermets with different Cr3C2 addition was investigated emphatically in 2 mol/L HNO3 solution. The results indicate that there is no obvious effect of Cr3C2 addition on the densification of the cermets, and all cermets are almost fully densified during sintering. The thickness of rim phase is reduced and the core size is increased remarkably in the cermets with 1 wt.% and 3 wt.% Cr3C2 addition; the grains are refined significantly in the cermets with the increase of Cr3C2 addition to 5 wt.%. The hardness and transverse rapture strength of the cermets are improved with Cr3C2 added properly. In HNO3 solution, the corrosion resistance of cermets is improved remarkably by Cr3C2 addition. The corrosion of binder phase is predominant in the cermets in which the Ni binder phase without Cr has lower corrosion resistance than the rim phase; whereas the corrosion resistance of binder phase with high Cr content is better compared to the rim phase, so that the degradation of rim phase is predominant and a reticulate binder phase forms. With the increase of Cr3C2 addition, the Mo content in rim increases, and it is bad for the corrosion resistance of rim phase. Additionally, the inner rim phase has lower corrosion resistance than the outer rim phase owing to the higher Mo content.  相似文献   

5.
Microstructure characterization of corrosion behavior of an alumina forming austenitic (AFA) steel exposed to supercritical carbon dioxide was conducted at 450–650 °C and 20 MPa. At low temperature and short exposure times, the oxidation kinetics were parabolic and the oxide scales were mainly composed of protective and continuous Al2O3 and (Cr, Mn)-rich oxide layers. As the temperature and exposure time increased, the AFA steel gradually suffered breakaway oxidation and its oxide scales showed a multilayer structure mainly composed of Fe3O4, (Cr, Fe)3O4, NiFe/FeCr2O4/Cr2O3/Al2O3, FeCr2O4/Al2O3, and NiFe/Cr2O3/Al2O3, in sequence. The corrosion mechanism based on the microstructure evolution is discussed in detail.  相似文献   

6.
Oxidation of Fe–10Cr in dry and wet O2 was studied at 600 °C for up to 168 h. Oxide microstructure was investigated by STEM/EDX, FIB/SEM and TEM. Oxidation in dry O2 gives a Cr-rich protective (Fe1−xCrx)2O3 scale. The same protective oxide initially forms in O2 + H2O environment, but after an incubation period scale breakdown is triggered by CrO2(OH)2 evaporation that depletes the substrate in Cr and converts (Fe1−xCrx)2O3 to FeCr spinel oxide. Internal oxidation occurs after breakaway. Alternating external and internal oxidation result in the inward-growing scale showing a characteristic banded morphology.  相似文献   

7.
A Sm(Co0.68Fe0.22Cu0.08Zr0.02)7.5 alloy was arc-ion-plated with a thin Cr2O3 film. It completely prevented the external oxidation and sufficiently suppressed the internal oxidation of the alloy in air at 700 °C for 20 h, causing the alloy to form only a very shallow layer where the Sm oxidation occurred. The mechanism for the effect of the Cr2O3 film on the oxidation of the alloy was proposed based on phase characterization of the oxidized layer.  相似文献   

8.
《Acta Materialia》2007,55(18):6182-6191
High-temperature oxidation and hot corrosion behaviors of Cr2AlC were investigated at 800–1300 °C in air. Thermogravimetric–differential scanning calorimetric test revealed that the starting oxidation temperature for Cr2AlC is about 800 °C, which is 400 °C higher than other ternary transition metal aluminum carbides. Thermogravimetric analyses demonstrated that Cr2AlC displayed excellent high-temperature oxidation resistance with parabolic rate constants of 1.08 × 10−12 and 2.96 × 10−9 kg2 m−4 s−1 at 800 and 1300 °C, respectively. Moreover, Cr2AlC exhibited exceptionally good hot corrosion resistance against molten Na2SO4 salt. The mechanism of the excellent high-temperature corrosion resistance for Cr2AlC can be attributed to the formation of a protective Al2O3-rich scale during both the high-temperature oxidation and hot corrosion processes.  相似文献   

9.
Corrosion behavior of low-alloy steel containing 1% Cr (1Cr) with normalized (ferritic–pearlitic) and quenched-and-tempered (tempered martensitic) microstructures was investigated in CO2 environments at 60 °C. The severe localized corrosion which was observed in N80 carbon steel, did not exist for 1Cr steel due to the formation of a compact and self-repairable Cr-rich scale. For 1Cr steel, the corrosion resistance with ferritic–pearlitic microstructure was better than that with tempered martensitic microstructure. An apparent corrosion scale spallation was observed on the surface of quenched-and-tempered 1Cr steel, while only slight scale spallation was seen for normalized 1Cr steel.  相似文献   

10.
Metastable Ti–Al–N and Cr–Al–N coatings have been proven to be an effective wear protection due to their outstanding mechanical and thermal properties. Here, a comparative investigation of mechanical and thermal properties, for Ti–Al–N and Cr–Al–N coatings deposited by cathodic arc evaporation with the compositions (c-Ti0.52Al0.48N, c/w-Ti0.34Al0.66N and c-Cr0.32Al0.68N) widely used in industry, has been performed in detail. The hardness of Ti0.52Al0.48N and Ti0.34Al0.66N coatings during thermal annealing, after initially increasing to the maximum value of ~ 34.1 and 38.7 GPa with Ta up to 900 °C due to the precipitation of cubic Al-rich and Ti-rich domains, decreases with further elevated Ta, as the formation of w-AlN and coarsening of precipitated phases. A transformation to Cr2N and finally Cr via N-loss in addition to w-AlN formation during annealing of the Cr0.32Al0.68N coating occurs, and thus results in a continuous decrease in hardness. Among our coatings, the mixed cubic-wurtzite Ti0.34Al0.66N coating exhibits the highest thermal hardness, but the worst oxidation resistance. The Cr0.32Al0.68N coating shows the best oxidation resistance due to the formation of dense protective α-Al2O3-rich and Cr2O3-rich layers, with only ~ 1.4 μm oxide scale thickness, after thermal exposure for 10 h at 1050 °C in ambient air, whereas Ti–Al–N coatings are already completely oxidized at 950 °C.  相似文献   

11.
In this study, the electrochemical corrosion properties of electrodeposited Cu foils in a CuCl2-containing acidic etching solution were investigated. The main passive product was CuCl and a trace amount of Cu2O can also be detected. The (2 2 0)-oriented Cu foils exhibited higher corrosion potential and lower corrosion current density than those with (1 1 1) or (2 0 0) texture, suggesting a superior corrosion resistance against the etching solution. It is proposed that the preferred orientation and thus the differences in atomic stacking density on specific planes dominated the corrosion properties of the electrodeposited Cu foils instead of grain size or surface roughness.  相似文献   

12.
Model alloys Fe–9Cr, Fe–20Cr and Fe–20Cr–20Ni (wt.%) with Ce (0.05%, 0.1%) or Mn (1%, 2%) were exposed to Ar–20CO2 gas at 818 °C. Scales on Fe–9Cr alloys consisted of FeO and FeCr2O4, Fe–20Cr–(Ce) alloys formed only Cr2O3, and Fe–20Cr–(Mn) alloys formed Cr2O3 and MnCr2O4. All Fe–20Cr–20Ni alloys formed Fe3O4, FeCr2O4 and FeNi3. Cerium additions had little effects, but additions of 2% Mn significantly improved oxidation resistance of Fe–20Cr and Fe–20Cr–20Ni alloys. Most alloys also carburized. All alloys developed protective chromium-rich oxide scales in air. Different behavior in the two gases is attributed to faster Cr2O3 scaling rates induced by CO2.  相似文献   

13.
The oxidation of six oxide dispersion strengthened (ODS) ferritic alloys was investigated at 1050 °C in air up to 200 h. Al plays the dominant role in improving the oxidation resistance of the ODS alloys. Cr and Y are of importance in forming the stable Al2O3 scale. To produce the dense alumina layer with enhanced adherence to the metal substrate, the concentrations of Al and Cr should be larger than 2 and 14 wt.%, respectively.  相似文献   

14.
《Intermetallics》2007,15(11):1453-1458
Effects of the Cr addition on glass formation, magnetic and corrosion properties of {[(Fe0.6Co0.4)0.75B0.2Si0.05]0.96Nb0.04}100xCrx (x = 1, 2, 3, 4 at.%) alloys have been investigated. It was found that the addition of Cr element slightly decreases the glass-forming ability (GFA), but is very effective in increasing corrosion resistance and improving soft magnetic properties for this Fe–Co–B–Si–Nb bulk glassy alloy within the composition range examined. The Fe–Co–B–Si–Nb–Cr alloys exhibit high GFA. Full glassy rods with diameters up to 4 mm can be synthesized by copper mold casting. The Fe-based bulk glassy alloys (BGAs) exhibit a high saturation magnetization of 0.81–0.98 T as well as excellent soft magnetic properties, i.e., extremely low coercive force of 0.6–1.6 A/m and super-high initial permeability of 26,400–34,100. Furthermore, corrosion measurements show that corrosion rate and corrosion current density of these Fe-based BGAs in 0.5 M NaCl solution decrease from 7.0 × 10−1 to 1.6 × 10−3 mm/year and 3.9 × 10−6 to 8.7 × 10−7 A/cm2, respectively, with increasing Cr content from 0 to 4 at.%. The success of synthesizing the new Fe-based BGAs exhibiting simultaneously high GFA as well as excellent good soft magnetic properties combined with high saturation magnetization and enhanced corrosion resistance allows us to expect future progress as a new type of soft magnetic materials.  相似文献   

15.
By a two-step fabrication process of electrolytic deposition and annealing treatment, an MgO/ZrO2 duplex-layer coating has been prepared on AZ91D magnesium alloy as a protective film against corrosion. Owing to the chemical bonding formed after the condensation of precursory hydroxides, the adhesion strength, thickness and compactness of MgO coating on the substrate are significantly enhanced by the intermediate ZrO2 layer which prevents the formation of corrosion product Mg2(OH)3Cl·4H2O. As a result, the MgO/ZrO2 duplex-layer coated specimen reveals relatively high corrosion resistance and superior stability in 3.5 wt% NaCl solution with respect to the MgO single-layer coated specimen.  相似文献   

16.
The inhibition effect of polyaspartic acid (PASP) and its synergistic effect with KI on mild steel corrosion in 0.5 M H2SO4 solution are studied by weight loss and electrochemical methods. The inhibition efficiency increases with the concentration of PASP and increases further with the presence of 1 mM KI. Result of the zero charge potential measurement shows that iodide ion promotes the film formation of PASP greatly. The mild steel surfaces after immersion test were analyzed using scanning electron microscopy and X-ray photoelectron spectroscopy. An adsorption model is proposed to elucidate the synergistic mechanism of synergistic effect.  相似文献   

17.
The structure and composition of passive film formed on Fe–20Cr–xNi (x = 0, 10, 20 wt.%) alloys in deaerated pH 8.5 borate buffer solution was examined by transmission electron microscope and Cs-corrected scanning transmission electron microscope-electron energy loss spectroscopy. Thickness of the passive film on each alloy was measured to be 2.5–2.7 nm and the passive film was enriched with Cr. The passive film formed on the alloys exhibited an amorphous structure, as confirmed by the lack of diffraction contrast and by the fast Fourier transform images taken within a region of the passive film on each alloy.  相似文献   

18.
Influences of nitrogen on the passivity of Fe-20Cr-(0, 1.1)N alloys were examined by in situ electrochemical techniques. Nitrogen was incorporated in the form of (Fe, Cr)-nitrides in the passive film, and Cr was enriched in the film of the alloy with nitrogen. Photocurrent analysis demonstrated that the structure of passive film formed on Fe-20Cr-1.1N alloy is Cr-substituted γ-Fe2O3 with (Fe, Cr)-nitrides. Mott-Schottky analysis revealed that the film formed on Fe-20Cr-1.1N contained higher Cr6+ and lower Cr3+ vacancy concentrations compared with that on Fe-20Cr alloy. All of these results were associated with the enhanced protectiveness of the film on Fe-20Cr-1.1N.  相似文献   

19.
Oxide films were formed on the biocompatible alloy Ti–13Nb–13Zr in a phosphate buffer at open-circuit potential (Eoc), potentiodynamically up to 8 V, or by micro-arc oxidation (MAO) at 300 V. Their electrochemical properties were assessed in a phosphate buffer saline solution (PBS). EIS and SEM results showed that the Eoc and potentiodynamically formed oxide films were compact and behave as a monolayer, while the MAO oxide was a bilayered film (compact inner and porous outer layers). Open-circuit potential and EIS resistance values indicated that the MAO oxide provides the best corrosion protection for the alloy in PBS.  相似文献   

20.
p-(9-(2-Methylisoxazolidin-5-yl)nonyloxy)benzaldehyde I, prepared using a cycloaddition protocol, was elaborated into its cinnamaldehyde derivative II which upon quarternization with propargyl chloride afforded III bearing an interesting blend of structural traits suitable for imparting inhibition of mild steel corrosion. Novel compounds I–III showed efficient inhibition against mild steel corrosion in CO2–0.5 M NaCl (40 °C, 1 atm; 120 °C, 10 bar), 1, 4, 7.7 M HCl, and 0.5 M H2SO4 at 60 °C as determined by gravimetry and electrochemical methods. The presence of carbonaceous surface and nitrogen, as revealed by XPS study, indicated the formation of a film covering the metal surface, which imparted corrosion inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号