首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以甲酸提取糠醛渣(FR)中的纤维素为原料,经硫酸、乳酸和水组成的混合酸催化水解制备纳米晶纤维素(NCC),研究优化了制备工艺。通过傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)、动态光散射(DLS)、透射电镜(TEM)对糠醛渣纳米晶纤维素的进行表征。结果表明,当硫酸占比30%、乳酸占比5%,在40℃温度下反应时间2.5h,制备的NCC为棒状,直径9~15nm、长度60~150nm,结晶度82.74%,收率为68.88%,具有良好的水中分散性。  相似文献   

2.
硫酸铜助催化制备纳米纤维素晶须   总被引:9,自引:1,他引:8  
以w(H2SO4)=64%的硫酸为催化剂,加入m(CuSO4)/m(纤维素)=0~3%的硫酸铜作助催化剂,水解脱脂棉,考察了制备纳米纤维素晶须(NCW)反应中反应温度、反应时间及硫酸铜加入量对纳米纤维素晶须产率、颗粒横截面直径、颗粒长度、颗粒长度与横截面直径之比和扫描电镜形貌的影响。结果表明,反应温度50℃、反应时间120min、催化剂投入量以m(CuSO4)∶m(纤维素)=1∶100为最佳工艺条件,纳米纤维素晶须对于脱脂棉的产率达58%左右,粒子的长径比为20~50,在原子力显微镜下观测到产品所成膜最高峰为27.95nm。加入了硫酸铜之后,缩短了反应时间,提高了反应效率和产率,减小了产物的颗粒直径,改善了纳米纤维素晶须的形状,因此,硫酸铜可以作为助催化剂有效地改善制备出的纳米纤维素晶须的形貌和尺寸分布。  相似文献   

3.
以微晶纤维素(MCC)为原料经硫酸水解制备纤维素纳米晶体(CNC)。采用单因素法结合正交试验系统地研究了硫酸质量分数、反应温度和反应时间对纤维素纳米晶体得率以及平均粒径的影响,并通过扫描电镜(SEM)、原子力显微镜(AFM)、X射线衍射仪(XRD)、纳米激光粒度仪对CNC的性能进行了表征,揭示了酸水解制备CNC的机理。结果表明:CNC制备的最佳工艺参数为硫酸质量分数64%、反应温度45 ℃、反应时间90 min,在此条件下CNC的得率为24.6%,粒径为204.8 nm。CNC水悬浮液呈一种稳定的淡蓝色胶体状态,其微观形貌比较规整,呈短棒状,直径约10~20 nm,长度在150~300 nm之间;XRD结果显示CNC的晶型为纤维素Ⅰ型,结晶度为80.2%。  相似文献   

4.
研究了以平均粒径13nm的二氧化硅为载体,银单质为抗菌剂的载银纳米抗菌粉体材料的制备工艺及抗菌性能。通过化学还原法在其表面负载理论含量为0.7%~4%(质量分数)金属银,采用抑菌环法和振荡烧瓶法对其抗菌性能进行了检测,结果表明,载银3%(质量分数)的纳米二氧化硅在80~140℃烧结温度范围内制得抗菌粉体对大肠杆菌和金黄色葡萄球菌的杀菌率几乎达到100%,具有优良的抗菌性能,可用于抗菌塑料、抗菌食品包装和抗菌纺织制品等领域。  相似文献   

5.
壳聚糖与柠檬醛缩合反应产席夫碱及其抗菌活性   总被引:2,自引:0,他引:2  
通过壳聚糖与柠檬醛在超声波振荡下反应制备了壳聚糖缩柠檬醛席夫碱。采用[L9(33)]正交实验探讨了反应时间、反应温度及反应物配比对壳聚糖席夫碱缩合率和取代度的影响。最佳条件为:反应物配比n(壳聚糖)∶n(柠檬醛)=1∶6,反应温度40~50 ℃,反应时间10 h,壳聚糖席夫碱的缩合率可达86%,取代度为0.82。红外光谱和X射线衍射光谱结果表明产物具有壳聚糖席夫碱的结构特征。对大肠杆菌、金黄色葡萄球菌和黑曲霉的抗菌实验表明,该产物对大肠杆菌、金黄色葡萄球菌和黑曲霉的最低抑菌浓度分别为1 g/L、1 g/L和5 g/L,其抗菌活性随浓度的增加而增加,且优于壳聚糖。  相似文献   

6.
以球形纳米二氧化硅、硝酸银为原料,通过化学还原法制备了二氧化硅/银复合粒子。探讨了还原剂、硝酸银添加量、反应时间、反应温度等对二氧化硅载银粒子载银量的影响规律。采用原子吸收光谱测定法(AAS)和X射线衍射(XRD)分析,对产物的含银量、晶型及平均粒径进行表征。结果表明:取0.5 g球形纳米二氧化硅,在硝酸银浓度为3×10-2 mol/L、硝酸银乙醇溶液添加量为20 mL、反应温度为30 ℃、反应时间为2 h、乙醛为还原剂的条件下,获得的二氧化硅载银粒子的载银量为10.6%(质量分数)。  相似文献   

7.
采用盐酸聚六亚甲基胍作为抗菌剂接枝到淀粉上,制备出具有抗菌性能的改性淀粉。之后将改性淀粉添加到纸浆中,利用造纸工艺抄造抗菌纸张并测试其抗菌性能。结果表明,为了获得最佳的接枝率,其适宜的制备工艺是:温度为80℃,PHGH的量相对于淀粉添加量之比为100%,GDE的添加量与淀粉添加量之比为6%,反应时间为2 h。红外光谱图表明盐酸聚六亚甲基胍成功接枝到淀粉上。抗菌性能检测结果表明,制备的抗菌纸针对大肠杆菌和金黄色葡萄球菌具有很好的抗菌和抑菌性。  相似文献   

8.
采用盐酸聚六亚甲基胍作为抗菌剂接枝到淀粉上,制备出具有抗菌性能的改性淀粉。之后将改性淀粉添加到纸浆中,利用造纸工艺抄造抗菌纸张并测试其抗菌性能。结果表明,为了获得最佳的接枝率,其适宜的制备工艺是:温度为80℃,PHGH的量相对于淀粉添加量之比为100%,GDE的添加量与淀粉添加量之比为6%,反应时间为2 h。红外光谱图表明盐酸聚六亚甲基胍成功接枝到淀粉上。抗菌性能检测结果表明,制备的抗菌纸针对大肠杆菌和金黄色葡萄球菌具有很好的抗菌和抑菌性。  相似文献   

9.
赵煦  刘志明  张生义 《广东化工》2012,39(14):3-4,95
采用响应面法优化微波辅助酸水解制备芦苇浆纳米纤维素工艺条件,结果表明纳米纤维素优化制备工艺条件为微波时间为10 min,反应温度为54.61℃,反应时间为3.02 h。优化条件下纳米纤维素得率平均为55.67%,与响应面法纳米纤维素得率预测值55.49%相接近。影响纳米纤维素得率的因素依次为微波时间、反应温度和反应时间。  相似文献   

10.
采用机械力化学法,以磷钨酸-柠檬酸为复合水解剂处理竹浆纤维,再进一步加入半胱氨酸,使降解的纤维素发生接枝反应,从而在水相中一锅法制备高荧光、高量子产率荧光纳米纤维素(fluorescent cellulose nanocrystals, F-CNC)。研究考察了半胱氨酸溶液浓度、反应时间、反应温度等因素对F-CNC的得率和荧光强度的影响。采用紫外分光光度计(UV-vis)、荧光分光光度计、透射电子显微镜(TEM)、傅里叶红外光谱仪(FTIR)、核磁共振光谱仪(NMR)、X-ray光电子能谱(XPS)、X射线衍射仪(XRD)以及热分析仪(TGA)等对F-CNC的光学性质、形貌结构、化学结构、晶体结构以及热稳定性等进行了表征分析。结果表明,半胱氨酸溶液浓度为1mol/L,反应时间为8h,反应温度为140℃,F-CNC的得率为56.8%,荧光量子产率达到34.24%,荧光寿命达到3.44ns,且F-CNC的直径在20~40nm,长度为150~300nm。基于机械力化学法制备F-CNC工艺简便、绿色环保且所制备的F-CNC在水中具有良好的分散性,在防伪和生物传感器中具有潜在的应用前景。  相似文献   

11.
采用非酶还原法,以黑曲霉菌原位还原银氨离子制备一种新型银纳米颗粒(AgNPs)/菌体复合抗菌材料,着重考察了反应温度与pH值对还原过程和所得复合材料的抗菌性能及稳定性的影响。结果表明,在温度为30℃、60℃和pH 9.5、11.5条件下,能够合成出粒径为6.9~8.2 nm的近球形AgNPs。该AgNPs均匀地分布在菌体表面上,对E.coli显示出高的抗菌性能:最小抑菌浓度(MIC)为217~434 mg·L-1(以菌粉总质量表示)或8~20 mg Ag·L-1(以银含量表示)。提高反应温度有利于提高菌体银负载量,但AgNPs粒径增大,抗菌性能有所下降;提高反应pH值有利于提高还原速率,而对抗菌性能影响不显著。复合材料中AgNPs与菌体结合牢固,单位质量复合材料释出的Ag+含量为1.7~6.8 mg·g-1,提高反应温度和pH值后Ag+的释出均减少。  相似文献   

12.
植入医疗器械的感染是临床治疗的难题之一,因此研究具有长效稳定抗菌效果的医用涂层对于医疗植入器械领域十分重要。本研究使用细菌纤维素膜片,通过粉碎―氧化法制备氧化改性细菌纤维素纳米晶体,并化学接枝阳离子化合物双胍制备获得新型纳米抗菌材料NBC-BG,最后与聚氨酯(PU)进行复合制备了PU-NBC-BG医用抗菌涂层。通过多种材料表征手段,研究了不同比例添加下涂层的结构性能变化,同时通过抗菌实验证明了PU-NBC-BG涂层具有优良且稳定的抗菌性能以及抗生物膜效果,在医疗器械领域具有很好的前景。  相似文献   

13.
以纳米氧化锌为载体,采用金属离子掺杂的方法制备了Ag/Zn O纳米复合抗菌剂,将其添加到高聚物中制备出抗菌塑料。实验结果表明:制备的Ag/Zn O复合粉体是一种纳米复合抗菌剂,粒径在18 nm左右,添加3‰这种抗菌剂制备的抗菌PE、抗菌PP塑料对大肠杆菌和金黄色葡萄球菌的抗菌率都大于了98%,达到了强抗菌效果,并且制备的抗菌塑料具有优异的抗菌长效性。  相似文献   

14.
以正硅酸四乙酯为原料,采用溶胶凝胶法制备纳米SiO2颗粒,再采用原位还原法以硝酸银为银源,成功制备出纳米Ag-SiO2颗粒(100nm左右),采用差示扫描量热仪表征证明银粒子以单晶银的形式被成功负载到SiO2颗粒上,具有良好的结晶度。通过将纳米Ag-SiO2颗粒添加到聚氯乙烯(PVC)中,利用熔融塑化工艺制备出抗菌型PVC管材,研究表明纳米Ag-SiO2颗粒的添加能够有效提高PVC管材的抗菌性能和力学性能,当Ag-SiO2颗粒的添加量为2%时,PVC复合管材对大肠杆菌和金黄色葡萄球菌的抗菌率分别达到94.2%和91.5%,同时复合管材的拉伸强度、断裂伸长率、弯曲强度、缺口冲击强度和弯曲弹性模量达到最大值,分别为19.8MPa,190%,72.3MPa,6.7kJ/m2和12.8GPa。  相似文献   

15.
聚丙烯抗菌塑料的制备及性能研究   总被引:11,自引:1,他引:11  
谭绍早 《中国塑料》2005,19(2):41-44
将表面处理过的载银无机抗菌剂与聚丙烯(PP)经双螺杆挤出得到高浓度的抗菌母料,然后按一定比例添加到PP中制备了PP抗菌塑料。研究了抗菌母料的毒性、添加量对PP抗菌塑料抗菌性能的影响,抗菌剂在PP抗菌塑料中的分散性,以及PP抗菌塑料的抗菌性能、力学性能和光老化性能。结果表明,抗菌剂在含4%(质量含量,下同)抗菌母料(或1%的抗菌剂)的PP抗菌塑料中分散均匀,基体力学性能不受影响;其对大肠杆菌、金黄色葡萄球菌等的抗菌率都达到99%以上,具有高效、广谱和长效抗菌性能以及良好的光老化性能。  相似文献   

16.
间硝基苯磺酸钠助催化硫酸水解制备芦苇浆纳米纤维素   总被引:1,自引:1,他引:0  
以间硝基苯磺酸钠(SMS)为助催化剂,质量分数 55% 硫酸水解芦苇浆制备纳米纤维素(NCC)。研究反应温度、反应时间以及SMS添加量对NCC的产率及粒径的影响。结果表明NCC最佳制备工艺条件为:反应温度 50℃,反应时间 3.0 h,间硝基苯磺酸钠添加量10%(以芦苇浆质量计)。傅里叶变换红外(FT-IR)光谱分析表明最佳工艺条件制备的NCC为纤维素类物质;透射电子显微镜和扫描电子显微镜图分析表明以SMS为助催化剂制备的的NCC形貌更规整,呈棒状。相同NCC制备工艺条件下,与十二烷基苯磺酸钠(SDBS)和硫酸铜(CuSO4)两种助催化剂相比,助催化剂SMS制备的NCC产率最高。  相似文献   

17.
以纤维素纳米晶须作为添加物,制备了水性聚氨酯纤维素纳米晶须复合材料。通过酸水解微晶纤维素制备的纤维素纳米晶须呈棒状,直径约20 nm,长约200 nm。纤维素纳米晶须分散液与水性聚氨酯混合均匀后通过浇铸、蒸发溶剂制备复合膜,对纤维素纳米晶须的结构、形貌,以及纤维素的添加量对复合材料性能的影响进行了分析与表征。  相似文献   

18.
谭绍早 《合成纤维》2006,35(4):17-20,25
将无毒、抗菌谱广、抗菌效率高、热稳定性好的载银无机抗菌剂与PE熔融挤出制备了打孔膜用抗菌母粒,研究了抗菌母粒的添加对打孔膜的抗菌性能、光老化性能、安全卫生性能的影响。研究结果表明:抗菌母粒属实际无毒级物质;随着抗菌母粒的增加,抗菌打孔膜的抗菌性能增加;当抗菌母粒的添加量为4.0%时,即抗菌剂在打孔膜中的质量百分含量为1.0%时,抗菌打孔膜的性价比最佳。  相似文献   

19.
采用球磨法制备的纤维素纳米晶(CNC)及市售纳米ZnO对聚乙烯醇(PVA)进行改性,改善了PVA膜的力学性能,并且,赋予其抗菌性,测试复合膜的力学性能、水蒸气透过性能及抗菌性能。结果表明,加入CNC后,提高了PVA膜的力学性能和阻湿性能,加入纳米ZnO后,复合膜对金黄色葡萄球菌具有一定的抗菌性能,并且,能进一步提高复合膜的拉伸强度,但是,降低了复合膜的阻湿性能。当CNC的添加量为3%、纳米ZnO∶CNC=2∶1(摩尔比)时,复合膜综合性能较好,拉伸强度为73.7 MPa,与纯PVA膜相比,提高了77.2%;断裂伸长率为3.8%,与纯PVA膜相比,提高了46.1%;水蒸气透过系数为3.44×10-13 g·cm/(cm2·s·Pa),与纯PVA膜相比,提高了11.7%。  相似文献   

20.
一步法制备乙酰化纳米纤维素及其性能表征   总被引:1,自引:0,他引:1  
采用机械力化学方法,在4-二甲氨基吡啶(DMAP)催化下一步法制备乙酰化纳米纤维素(A-NCC)。通过单因素研究方法,对影响A-NCC得率的DMAP用量、球磨时间、反应温度、超声时间、反应时间等因素进行探讨及分析。采用透射电子显微镜(TEM)、X射线衍射仪(XRD)、热分析仪(TGA)、傅里叶变换红外光谱仪(FTIR)和X射线光子能谱分析(XPS)等对所制备A-NCC的形貌、热稳定性和谱学性能进行分析表征,采用滴定法测量表面羟基的取代度。结果表明:机械力化学法制备的A-NCC呈细长状,直径约为10~30nm,长度约为200~750nm,结晶度为76%,取代度(DS)在0.125~0.214之间;TGA分析表明,A-NCC热分解温度为311℃,低于竹浆。采用机械力化学法制备乙酰化纳米纤维素具有工艺简便、绿色环保的优点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号