首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Experiments were conducted for the investigation of the influence of reinforcing steel corrosion on the shear capacity of reinforced concrete beams. The shear performance of RC beams with different corrosion levels in both longitudinal reinforcing steel bars and stirrups was examined. Relationships of corrosion-induced crack widths in concrete cover with the corrosion level of the reinforcing steel bars were obtained. Engineering approaches were developed to predict the residual shear strength of the corroded beams.  相似文献   

2.
This study investigated a reinforced concrete specimen that had deteriorated in an artificial environment for 2 years. The steel/concrete interface and corrosion-induced cracks were observed by SEM to investigate the millscale on the rebar surface and the distribution of rust. The millscale was not further oxidised before the surface cracking of the concrete cover. The penetration of corrosion products into concrete and the formation of a corrosion layer proceeded simultaneously. The rust did not fill the corrosion-induced cracks in concrete. Instead of the three-stage model, a two-stage model is proposed to describe the concrete cracking process induced by steel corrosion.  相似文献   

3.
This paper aims to determine the effect of the fineness modulus of fine aggregate on the quality and development of passive film and its subsequent effect on the corrosion of reinforced concrete structures. The study uses both electrochemical laboratory controlled experimentation and finite element modelling approach. Corrosion is an electrochemical process that requires an electrolyte for the occurrence of a corrosion reaction. Therefore, it is necessary to calculate the effective corrosion rate with reference to the saturated area of the concrete only when there is corrosion of reinforced concrete structures. Theoretically and numerically, the saturated area depends on the capillary zone porosity, gel zone porosity and degree of saturation in the aggregate free volume of concrete, which is a heterogeneous material. It is thus important to understand the effect of aggregate fineness on the corrosion of steel rebars. Therefore, detailed investigations were conducted using a variety of fine aggregates and combinations thereof. The initiative for this research came from the observation that the interfacial transition zone (ITZ) around the steel bar in concrete does not contain coarse aggregate, but could be surrounded by mortar and not only paste. Hence, the fine aggregate volume may also influence the corrosion rate. Some fine aggregate, which is finer than coarse aggregate, could be present in the vicinity of the steel bar surface, depending on the fineness modulus, which may affect both the development of the passive layer and the corrosion rate. The previous research data in this area were found to be limited. Hence, these factors have been investigated in the present study. Both mortar and concrete prismatic specimens were cast, and the quality of passive layer development and the corrosion severity were compared between specimens to determine the effect of fine aggregate volume with respect to the respective fineness modulus values. The corrosion potential, current and rate values obtained through experimentation showed significant differences in their magnitudes with respect to the variation in the fineness modulus. A directly proportional relation was observed between the fineness modulus of fine aggregate and the corrosion of rebars. Therefore, in the light of the experimental results obtained in this study, a finite element based numerical model incorporating the effect of the fineness modulus of fine aggregate on corrosion of steel rebars in concrete has been developed and successfully verified in this study.  相似文献   

4.
Chloride-induced corrosion of steel reinforcement in concrete may cause severe damage to RC structures. This paper examines the interaction between corrosion-induced cover crack growth and corrosion propagation. The coupled micro- and macro-cell corrosion process involved in a typical chloride-induced corrosion is numerically simulated. Both oxygen concentration and electrical potential distribution within concrete cover are considered in the electrochemical analysis. A uniform thick-walled cylinder model is formulated to simulate the cover surface crack width evolution. Results show that macrocell corrosion rate may not change so much while microcell corrosion rate increases a lot as oxygen permeability increases with corrosion-induced cover crack.  相似文献   

5.
Corrosion potential measurements were analyzed using the continuous wavelet transform (CWT). The corrosion potentials estimate the probability of corrosion of steel embedded in concrete. The CWT of the corrosion potential data estimates the behaviour in time of the energy distribution associated with the corrosion process. The results obtained indicate that CWT-based ratios can be successfully applied to better understand the different processes involved in the corrosion phenomenon, such as the cracking of concrete.  相似文献   

6.
This paper presents an analytical solution to the non-uniform pressure on thick-walled cylinder. The formulation is based on the linear elasticity theory (plain strain) and stress function method. As an example, the proposed solution is used to model the stress distribution due to non-uniform steel reinforcement corrosion in concrete. The model is formulated considering different scenarios of corrosion pressure distribution. It is validated against the finite element model for different cases of non-uniform pressure distributions. The results show that the corrosion-induced cracks are likely to start just beyond the anodic zone. This is confirmed by the experimental tests on concrete cylinder exposed to non-uniform accelerated corrosion of steel reinforcement. The model can be effectively used to calculate the distribution of corrosion-induced stresses in concrete.  相似文献   

7.
A. Nasser 《Corrosion Science》2010,52(9):2878-2890
This paper presents specific experiments which were developed in order to assess galvanic currents in macrocell corrosion specimens involving active steel in carbonated concrete and passive steel in sound concrete. The influence of the steel-concrete interface condition on the galvanic current was also experimentally investigated. To focus on macrocell corrosion rate assessment, the initiation time of the corrosion process (concrete carbonation) was accelerated. FEM simulations were carried out in order to enhance the physical comprehension of these corrosion experiments. It was found that, in realistic condition, the electrical coupling of active and passive steel areas leads to high galvanic currents and consequently high corrosion levels according to RILEM recommendation. Moreover, steel-concrete interfacial defaults significantly increase the macrocell driving potential and, therefore, the galvanic corrosion current.  相似文献   

8.
M. Manna 《Corrosion Science》2009,51(3):451-1846
Phosphate coatings have been obtained on three steel substrates: (i) ferritic-pearlitic (F-P), (ii) tempered martensitic (T-M) and (iii) tempered martensitic containing oxide scale (T-M-O) to simulate TMT rebar surfaces which are extensively used for concrete structure. Thinnest coating, constituting of coarse structure and hopeite as the principle phosphate was obtained on F-P steel substrate where as thickest coating, constituting of acicular structure and spencerite as the principle phosphate was obtained on T-M-O steel substrate. Oxide scale on the T-M-O steel substrate acted as catalyst for phosphate reaction. The phosphate coated F-P steel substrate showed better performance against corrosion and bond strength with concrete structure.  相似文献   

9.
The damage of concrete cover in reinforced concrete structures induced by reinforcing steel corrosion is investigated in this study. The damage process of the concrete cover can be divided into two distinct stages: the non-cracking stage and the partial cracking stage. An analytical model based on damage mechanics and elastic mechanics is developed to predict the concrete cracking due to steel corrosion. Based on this model, the expansive pressure and the radial loss of steel bar are discussed. Parametric studies are carried out to examine the effects of the correlative factors on the expansive pressure and the steel loss.  相似文献   

10.
In situations when external chloride penetration is the cause of depassivation, the corrosion process may start from the outer region of a rebar, which might expand non-uniformly. Therefore, the main objective of the present work is to explore the effect of non-uniform corrosion on cracking behavior of cover concrete. The influences of concrete heterogeneities and the porous layer generated at the rebar/concrete interface on the failure patterns and the corrosion level of cover concrete are considered. The random aggregate structures of concrete are built, and the concrete is regarded as a composite composed of three phases, i.e. the aggregate, mortar matrix, and the interfacial transition zones (ITZs). The plasticity damaged model is employed to describe the mechanical properties of the mortar matrix and the ITZs, and it is assumed that the aggregate is elastic. Non-uniform radial displacement with a half ellipse shape is adopted to describe the expansion distribution of the corrosion products. The failure pattern and the corrosion pressure of cover concrete, and the critical corrosion level when the cover concrete cracks due to non-uniform corrosion expansion are studied based on the meso-scale numerical method. The comparison of the simulation results with the available test results on the failure pattern of cover concrete shows fairly good agreement. Moreover, the influence of meso-structural heterogeneities is explored, and the cracking behavior obtained under non-uniform and uniform expansion conditions are compared. Finally, the influences of cover thickness, rebar diameter and the location of rebar (namely side-located rebar and corner-located rebar), on the failure pattern and the corrosion level are examined.  相似文献   

11.
The present paper focuses on the observed corrosion-induced embrittlement of alloy 2024 and tries to answer the key question on whether the observed embrittlement is attributed to hydrogen uptake and trapping in the material. Hydrogen is produced during the corrosion process and is being trapped in distinct energy states, which correspond to different microstructural sites. The formation of a hydrogen-affected zone beneath the corrosion layer is supported by fractographic analysis. Removal of the corrosion layer leads to complete restoration of yield strength but only partial restoration of ductility. Additional heat treatment to release the trapped hydrogen leads only to complete restoration of ductility.  相似文献   

12.
The paper deals with a 3D numerical model for transient analysis of processes after depassivation of reinforcement in concrete, which are relevant for calculation of corrosion rate. The aim of the study is to investigate the influence of the concrete quality, cracking and water saturation in concrete on the current density. The results show that the corrosion rate is higher in poor quality concrete than in good quality concrete. The model predicts that cracks do not influence corrosion rate for the case where the only influence of the crack is on the rate at which oxygen can reach the steel.  相似文献   

13.
In the study characterization of steel corrosion in concrete at the macro- and micro-level was performed. Physical (electrical-resistance probes) and electrochemical techniques (coupled multi-electrode arrays) were implemented in order to upgrade the general information that conventional electrochemical techniques can provide. Measurements were performed in mortar exposed to periodic wetting and drying. Steel corrosion damage was assessed by micro X-ray computer tomography (CT) and SEM. The results were compared and interpreted. By combined use of micro-CT and electrochemical methods, new insights into the corrosion mechanisms of steel in concrete were obtained.  相似文献   

14.
The prediction of the long-term behavior of reinforced concrete structures involved in the nuclear waste storage requires the assessment and the modeling of the corrosion processes of steel reinforcement. This paper deals with the modeling of the cathodic reaction that is one of the main mechanisms of steel rebar corrosion. This model takes into account oxygen reduction and oxygen diffusion through a diffusion barrier (iron oxide and/or carbonated concrete) as a function of water saturation degree. It is demonstrated that corrosion rate of reinforcement embedded in concrete with water saturation degree as low as 0.9 could be under oxygen diffusion control. Thus, transport properties of concrete (aqueous and gaseous phase, dissolved species) are key parameters that must be taken into account to model electrochemical processes on the reinforcement.  相似文献   

15.
Inhomogeneous corrosion in reinforced concrete is investigated using a beam with a flexural crack intersecting the reinforcement. An Evans diagram representation of the macrocell corrosion system is developed. The relationship between the current density and the potentials relative to the crack obtained from the Tafel polarization responses of active and passive steel in concrete compares favorably with the experimental values. When both microcell and macrocell mechanisms contribute to metal loss at the crack, the Evans diagram representation indicates that an increase in the macrocell current density results in a decreasing contribution from the local microcell at the macrocell anode.  相似文献   

16.
Chloride threshold level for corrosion of steel in concrete   总被引:3,自引:0,他引:3  
Ki Yong Ann 《Corrosion Science》2007,49(11):4113-4133
The steel rebar inside reinforce concrete structures is susceptible to corrosion when permeation of chloride from deicing salts or seawater results in the chloride content at the surface of the steel exceeding a chloride threshold level (CTL). The CTL is an important influence on the service life of concrete structures exposed to chloride environments. The present study discusses the state of art on the CTL for steel corrosion in concrete, concerning its measurement, representation, influencing factors and methods to enhance the CTL. As the CTL values reported in the majority of previous studies were varied with experimental conditions, corrosion initiation assessment method, the way in which the CTL was represented, direct comparison between the results from different sets and evaluation was subjected to the difficulty. As a result, total chloride by weight of cement or the ratio of [Cl]:[H+] is the best presentation of CTL in that these include the aggressiveness of chlorides (i.e. free and bound chlorides) and inhibitive nature of cement matrix. The key factor on CTL was found to be a physical condition of the steel-concrete interface, in terms of entrapped air void content, which is more dominant in CTL rather than chloride binding, buffering capacity of cement matrix or binders. The measures to raise the CTL values using corrosion inhibitor, coating of steel, and electrochemical treatment are also studied.  相似文献   

17.
In the companion paper [Z.T. Chang, B. Cherry, M. Marosszeky, Polarisation behaviour of steel bar samples in concrete in seawater, Part 1: Experimental measurement of polarisation curves of steel in concrete, Corrosion Science 50(2) (2008) 357-364], influences of the experimental procedure on measured polarisation curves of steel in concrete in seawater were investigated. It was found that an undistorted full polarisation curve of a steel sample in concrete can be obtained by the two-test procedure to conduct separate anodic and cathodic polarisation tests and combine the two partial curves into one curve. However, polarisation curves of steel samples in concrete in seawater were found not to fit with the theoretical curves based on the kinetics of charge transfer reactions. This was considered to be due in the main to the influence of a passive film on the steel surface in concrete. This paper proposes an empirical model for the polarisation behaviour of steel in concrete based on the assumption of two major electrochemical processes taking place at the interfaces of steel/passive-film/concrete: one is the active corrosion process and the other is the passive film growth or dissolution process. Typical curve-fit results are presented using the proposed model to simulate the polarisation behaviour and to evaluate the corrosion rate and Tafel parameters of three types of steel corrosion in seawater: steel bars in concrete, new steel bars and corroded steel bars.  相似文献   

18.
Inhibitors in concrete are usually used to be effective in alkaline or neutral solutions, however, when corroding by chlorides, there is a local acidification and therefore it is necessary to study the effect of the inhibitor in acid pH values. Measurements of the corrosion rate of corrugated steel bars have been carried out in solutions simulating electrolytic chloride environments in the micropores of concrete in the propagation period. It has been studied the effect of sodium nitrite as a corrosion inhibitor when added to the mentioned solutions. The solutions considered consisted of sodium chloride for neutral condition and ferrous chloride for acid condition. This is the soluble compound produced during the corrosion of steel as a result of chloride attack. Comparison of the results of polarization resistance with gravimetrically determined weight losses are presented. Also, results of electrochemical impedance spectroscopy are presented here. It has not been observed a significative improvement in using nitrite as inhibiting agent in these systems. The corrosion seems to be related to the [Cl]/[OH] ratio in three different regions of pH identified from acid to alkaline pH values.  相似文献   

19.
A comprehensive model for predicting the corrosion rate of steel in concrete has been developed using the concept of simulated polarization resistance experiments. This model is developed by carrying out a nonlinear regression analysis on data obtained from numerical experiments that are based on the solution of Laplace’s equation in a domain determined by the polarized length of the rebar. This part of the paper provides a comprehensive verification of the developed model and illustrates the application of the model to investigate the coupled effects of parameters affecting corrosion of steel in concrete. The results of the verification study show that the model predictions are in good agreement with the experimental data.  相似文献   

20.
The effect of temperature on the corrosion rate of steel corrosion in concrete is investigated through simulated polarization resistance experiments. The simulated experiments are based on the numerical solution of the Laplace’s equation with predefined boundary conditions of the problem and have been designed to establish independent correlations among corrosion rate, temperature, kinetic parameters, concrete resistivity and limiting current density for a wide range of possible anode/cathode (A/C) distributions on the reinforcement. The results, which successfully capture the resistance and diffusion control mechanisms of corrosion as well as the effect of temperature on the kinetic parameters and concrete/pore solution properties, have been used to develop a closed-form regression model for the prediction of the corrosion rate of steel in concrete.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号