首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
通过恒应变压缩实验研究了锻态TC10钛合金的高温变形行为和组织演变规律,变形温度为800~920℃,应变速率为0.01~10 s~(-1),变形量为60%。研究结果表明:降低变形温度、提高应变速率,流变应力会在变形初期迅速增加,而显微组织没有明显变化,当流变应力达到最大值后随着动态再结晶的发生而逐渐降低。提高变形温度、降低应变速率,能够为动态再结晶提供能量,细化组织并降低流变应力。综合分析表明:在变形温度为840~900℃,应变速率为0.01~0.1 s~(-1)的参数范围内进行热变形可以获得性能优良的TC10钛合金产品。  相似文献   

2.
采用高温拉伸试验,得到TA9钛合金在800~920℃温度范围内和应变速率为0.001~0.125 s-1条件下的应力应变曲线,分析在拉应力条件下,变形温度、应变速率和流变应力三者之间的关系,构造了Arrhenius双曲正弦函数本构方程,并进行了应变修正,绘制出变形量为20%和50%时的热加工图,总结出不同变形条件下合金显微组织演变规律。结果表明:流变应力随变形温度的提高和应变速率的降低而降低,由本构方程计算出两相区变形激活能为569.453 kJ/mol,热加工图中的失稳区主要有四个区域,分别是在800~845℃和870~920℃时,应变速率在大于0.07 s-1和0.002~0.03 s-1处。此外,断裂位置显微组织中α相沿着合金变形的方向被拉长,α晶界变成锯齿状,这与动态回复过程中α向沿亚晶界破碎、分割和晶界突出有关。当变形温度一定时,等轴α晶粒尺寸随应变速率的提高而减小,当应变速率一定时,等轴α晶粒尺寸随温度的升高而变大。  相似文献   

3.
钛合金热变形行为研究   总被引:1,自引:0,他引:1  
综述了国内外钛合金热变形行为的研究进展,分析了几种典型的α钛合金、近α钛合金、α+β钛合金及β钛合金的在不同的热变形条件下的流变应力的行为特征,软化机制,表观激活能及组织演变规律。介绍了氧、氢元素和不同的组织状态对钛合金热变形的影响。  相似文献   

4.
采用真空感应熔炼法制备了医用Ti-50. 7%Ni合金(原子数分数), 测试了铸态合金的成分、相变点、微观组织和硬度, 并采用Gleeble-3800热模拟实验机在变形温度750~950℃、应变速率0. 001~1 s-1, 应变量为0. 5的条件下对Ni-Ti合金进行高温压缩变形, 分析其流动应力变化规律, 建立了高温塑性变形本构关系和热加工图.结果表明: 当变形温度减小或应变速率增大时, Ni-Ti合金的流动应力会随之增大.应变速率为1 s-1时, 合金的真应力-真应变曲线呈现出锯齿状特征.根据热加工图, 获得了Ni-Ti合金的加工安全区和流变失稳区, 进而确定其合理的热变形温度范围为820~880℃, 真应变速率低于0. 1 s-1.从而为制定镍钛合金的锻造工艺参数提供理论和数据基础.   相似文献   

5.
为了研究热作模具钢5CrNiMoVNb的热变形行为,利用Gleeble3800热模拟试验机进行单道次热压缩实验,获得了应变速率为0.001~0.1 s-1和变形温度1 030~1 230℃条件下的高温流变应力曲线。应用双曲正弦函数构建了与应变有关的材料本构模型并验证,并基于动态材料模型构建了三维功率耗散图和三维失稳图,将二者叠加得到典型应变下的热加工图。结果表明,所有变形条件下的高温流变应力曲线均呈现典型动态再结晶特征,并且由于奥氏体基体析出强化相含量、动态再结晶体积分数的影响,流变应力随变形温度的降低或应变速率的增大而增大。基于5CrNiMoVNb钢的本构模型计算的流变应力值与实验值的相关性系数为0.992 7,较高的相关性系数表明建立的高温流变应力模型能够比较准确地预测合金的流变应力。此外,根据不同条件下的三维功率耗散图和三维失稳图可知,随着应变的增大,功率耗散峰值区向中温、高应变速率区域扩散,热变形失稳仅容易出现在低应变、低变形温度和高应变速率区域。真应变为0.8时,最佳的加工工艺参数范围为:变形温度为1 080~1 200℃,应变速率为0.01~0.1 s...  相似文献   

6.
采用了MMS-100热力模拟试验机对5182铝合金进行单道次压缩实验,对其热变形行为展开研究,构建了流变应力模型和加工图.结果发现:5182铝合金的流变应力随温度的升高、应变速率的降低而逐渐减小;高温条件会促使动态再结晶的发生,而应变速率的影响可以忽略;合金的真应力-真应变曲线在高应变速率时会出现锯齿状波动;合金在加热温度420~500 ℃、真应变ε= 0.4、应变速率的热变形条件下会有一个高功率耗散因子区域;合金在450 ℃附近存在较大安全加工区域.   相似文献   

7.
曾莉  张威  王琦  朱丽丽 《钢铁》2017,52(10):72-77
 为了研究超级奥氏体不锈钢Cr20Ni24Mo6N钢的高温变形行为,采用Gleeble热模拟试验机进行了等温压缩试验,建立了合金的热加工图。结果表明,当变形温度为1 000~1 200 ℃时,Cr20Ni24Mo6N钢的流变曲线表现出典型的“加工硬化+动态再结晶软化”特点;Cr20Ni24Mo6N钢的热激活能[Q]为678.656 kJ/mol。通过加工图与微观组织综合分析得出,超级奥氏体不锈钢Cr20Ni24Mo6N的合适热加工工艺为,应变速率10 s-1左右,应变量0.5~0.8,变形温度1 150~1 200 ℃。  相似文献   

8.
通过等温恒应变速率压缩试验,研究了2种FGH98合金粉末热等静压锭坯在1 050~1 150℃/0.005~1.000 s-1的变形行为。基于动态材料模型,建立了2种粉末锭坯的热加工图。结果表明,2种粉末锭坯的流变曲线特征相似,同种变形条件下,氩气雾化(AA)粉末锭坯的峰值应力小于等离子旋转电极(PREP)粉末锭坯。AA粉末锭坯的最佳变形窗口为1 088~1 108℃/0.005~0.016 s-1,功率耗散效率η大于42%;PREP粉末锭坯的最佳变形窗口为1 098~1 120℃/0.010~0.016 s-1,η大于40%。  相似文献   

9.
在Thermecmastor-Z动态热模拟试验机上对Ti-43Al-4Nb-1.4W合金进行高温压缩变形实验,实验温度范围为1 050~1 150℃,应变速率范围为0.001~1 s 1。根据该合金的真应力-真应变曲线,建立合金高温变形的本构方程和热加工图,并对不同变形区域的组织进行分析。结果表明:Ti-43Al-4Nb-1.4W合金高温压缩变形峰值应力与变形条件的关系可用双曲正弦函数来表示,其变形激活能为567.05 kJ/mol,高温变形的本构方程为:ε=3.37×1018.[sinh(0.0043σ)]3.27exp[567.05/(RT)];加工图显示该合金最佳加工区域的应变速率为0.001~0.01 s 1(η范围在40%~55%),在此加工区域内合金发生较明显的动态再结晶和β相的球化。  相似文献   

10.
朱堂葵  王柯   《钛工业进展》2021,38(2):1-6
利用Gleeble-3500热模拟压缩试验机,在变形温度820~980℃和应变速率0.01~10 s~(-1)的变形条件下,对TA19钛合金进行热模拟压缩试验,并根据动态材料模型(DMM)建立了其热加工图。同时,结合TA19钛合金微观组织分析,揭示了热变形工艺参数影响热加工图的内在原因。结果表明:变形工艺参数与能量耗散率和非稳态区密切相关。应变速率为0.01~1 s~(-1)时,能量耗散率较大,且随着变形温度的升高,能量耗散率先增大后减小,在940℃附近获得最大值。同时,变形失稳区包括2个典型区域,其中I区为(820~900)℃/(0.01~1) s~(-1),II区为(960~980)℃/(1~10) s~(-1)。变形温度为940℃时,较多的等轴α相和较高的再结晶驱动温度使得再结晶程度加强,因此能量耗散率获得最大值。绝热剪切带、片层α相与等轴α相之间的变形不协调以及β晶粒的剧烈长大是TA19钛合金高温变形失稳的主要原因。  相似文献   

11.
采用恒应变速率高温压缩模拟实验,对Ti-5523钛合金在应变速率为0.001~5.0 s-1,变形温度为600.900℃条件下的流变应力行为进行了研究,计算了变形激活能及相应的应力指数,建立了合金的应力.应变关系方程.结果表明:在恒温条件下,合金的流变应力随应变速率的增大而增大;在恒应变速率条件下.合金的流变应力随温度的升高而降低;变形激活能和应力指数分别为Q=317.811 kJ·mol-1和n=4.43;可用包含Arrhenius项的Zener-Hollomon参数描述Ti-5523钛合金高温塑性变形时的流变行为.  相似文献   

12.
为探索TA17钛合金热变形行为和变形特性,采用Gleeble-3800热模拟机开展温度为700~1 100℃、应变速率为0.1~40 s~(-1)、变形程度为60%的热压缩试验。基于Arrhenius模型构建TA17钛合金的本构方程,基于动态材料模型构建TA17钛合金的热加工图(ε=0.6),并结合显微组织分析对热加工图进行验证。结果表明:热加工图预测结果与组织分析相符,当温度低于750℃或者应变速率大于10 s~(-1)的区域为TA17钛合金的加工失稳区域,失稳区以外是安全加工区域,热加工性能最佳的区域是800℃、0.1 s~(-1)。  相似文献   

13.
在Gleeble-1500热模拟机上,对5A01铝合金进行等温热压缩实验,研究该合金在变形温度为350~450℃、应变速率为0.01~1s-1条件下的热变形行为,建立其热加工图。结果表明:5A01铝合金是温度、正应变速率敏感材料,其流变应力随变形温度降低和应变速率升高而增大,利用峰值应力获得的该合金热加工图表明合金热变形存在两个失稳区域,即变形温度为350~390℃,应变速率为0.01~0.2s-1的区域和变形温度为405~450℃,应变速率为0.2~1s-1的区域;本实验条件下最佳加工参数为变形温度450℃,应变速率0.01s-1。  相似文献   

14.
采用Gleeble3800热模拟试验机对SP700钛合金进行热压缩试验,研究合金在变形温度为800~880℃、应变速率为1~10 s–1、压缩变形量为30%和50%条件下的流变行为及显微组织演变.结果表明,随着变形温度升高和应变速率降低,SP700钛合金热压缩变形的峰值流变应力降低.合金在800℃压缩变形时,流变应力曲线呈明显的动态软化,其显微组织中α片层逐渐破碎球化,部分α片层发生动态再结晶.随变形温度升高,合金压缩真应力–应变曲线呈稳态流变状态.在相同变形温度下,随应变速率和压缩变形量增加,α片层球化程度增加.热变形过程中,平行于压缩轴的α片层在压应力作用下弯曲扭折,片层内取向差不连续存在,并于不连续处存在新α/α界面.垂直于压缩轴的α片层在压应力作用下界面发生起伏,片层内部存在累积取向差.在界面起伏处β相楔入α片层,最终导致α片层的破碎球化.  相似文献   

15.
利用Gleeble 3800型热模拟试验机对TC25G钛合金进行了恒应变速率热压缩变形实验,获得了变形温度为930~1 020℃、应变速率为0.001~50 s~(-1)、变形程度为60%条件下的组织演变特征。结果表明:应变速率对α相的含量和形状基本没有影响,而对β转变组织的影响较大,高应变速率下呈带状,低应变速率下呈等轴状;变形温度对于控制α相含量有显著影响,α相含量随变形温度升高而降低,960℃时,仅为8%,且较高的变形温度下,β晶粒尺寸也相对粗大。  相似文献   

16.
热变形参数对X60管线钢高温变形行为和显微组织的影响   总被引:1,自引:1,他引:0  
通过热模拟试验测定了X60级管线钢以0.1-20s^-1的应变速率在900-1050℃温度区间压缩变形过程中的真应力-真应变曲线,观察了变形后空冷至室温的显微组织,结果表明:在此变形条件下,材料没有发生动态再结晶,但随着变形温度的升高和变形速率的下降,将出现动态回复 现象;低温和大变形速率变形能细化铁素体晶粒组织。  相似文献   

17.
以热轧态Ti80合金作为基材,在Gleeble-3500热模拟测试机上进行高温压缩测试,变形温度为800~1000℃,应变速率为0.01~10 s-1,总变形比例为75%.结果 表明:Ti80钛合金在800~950℃时处于α+β两相区,其流变行为受变形温度和应变速率的显著影响.Ti80钛合金的加工硬化主要来自于初始α相...  相似文献   

18.
新型喷射成形镍基高温合金热变形行为的研究   总被引:1,自引:0,他引:1  
采用Gleeble-3500热模拟实验机对新型喷射成形镍基高温合金在1050~1140℃,应变速率为0.01~10.0 s-1,最大工程应变量为80%的条件下,进行了等温恒应变轴向压缩热变形实验。确定了该合金最佳热变形条件为温度1050℃,应变速率10.0 s-1,工程应变量20%~60%;分析了变形条件对流变应力、峰值应力及软化系数的影响规律,在相同的应变速率下,随着温度的升高,峰值应力降低;在相同的实验温度下,随着应变速率的升高,峰值应力降低;软化系数增加。计算了该喷射成形合金的热变形激活能为920.74 kJ.mol-1,从而确定了该合金的本构方程,经验算此方程较好地描述该合金的变形特点。  相似文献   

19.
采用光学金相、热压缩实验和本构方程计算,研究了7085铝合金在不同热变形工艺下的热变形行为。实验结果表明,在热变形温度350~460℃和变形速率0.01~10 s-1范围中,随着7085铝合金变形温度的提高和速率降低,合金的变形峰值应力随之降低,7085铝合金呈现出正应变速率敏感性;采用Arrhenius本构关系构建了7085铝合金热变形的本构模型,并建立了7085铝合金变形温度和速率范围内的热加工图,确定出7085铝合金热变形加工的合适工艺范围温度为420~460℃,应变速率0.01~0.3 s-1。在此工艺条件下,合金变形稳定且易于金属流动。  相似文献   

20.
程亮  常辉  樊江昆  唐斌  寇宏超  李金山 《钢铁钒钛》2013,34(1):22-25,40
对新型近β钛合金Ti-7333进行等温压缩试验,并对合金的流变行为进行研究.研究结果表明:Ti-7333的流变应力对变形参数的变化十分敏感,随着温度的升高和应变速率的下降,流变应力显著减小;合金的变形以动态回复为主,动态再结晶为辅.基于Mecking和Bergstrom提出的合金热变形过程中的位错密度演变模型建立了Ti-7333合金的本构模型,准确地描述了合金热变形过程中的流变应力,并且模型中参数数量较少,便于应用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号