首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Galfan coatings on steel in laboratory exposures with predeposited NaCl and cyclic wet/dry conditions exhibit nearly the same corrosion products as after 5 years of marine exposure. A general scenario for corrosion product evolution on Galfan in chloride-rich atmospheres is proposed. It includes the initial formation of ZnO, ZnAl2O4 and Al2O3 and subsequent formation of Zn6Al2(OH)16CO3⋅4H2O, and Zn2Al(OH)6Cl⋅2H2O and/or Zn5Cl2(OH)8⋅H2O. An important phase is Zn6Al2(OH)16CO3⋅4H2O, which largely governs the reduced long-term zinc runoff from Galfan. A clear influence of microstructure could be observed on corrosion initiation in the slightly zinc-richer η-Zn phase adjacent to the β-Al phase.  相似文献   

2.
Zn-Al-Mg alloy (ZM) coating provides a decisively enhanced corrosion resistance in a salt spray test according to DIN EN ISO 9227 (NSS) compared to conventional hot-dip galvanised zinc (Z) coating because of its ability to form a very stable, well adherent protecting layer of zinc aluminium carbonate hydroxide, Zn6Al2(CO3)(OH)16·4H2O on the steel substrate. This protecting layer is the main reason for the enhanced corrosion resistance of the ZM coating. Surface corrosion products on ZM coated steel consist mainly of Zn5(OH)6(CO3)2, ZnCO3 and Zn(OH)2 with additions of Zn5(OH)8Cl2 · H2O and a carbonate-containing magnesium species.  相似文献   

3.
The formation of corrosion products on Zn55Al coated steel has been investigated upon field exposures in a marine environment. The corrosion products consisted mainly of zinc aluminium hydroxy carbonate, Zn0.71Al0.29(OH)2(CO3)0.145·xH2O, zinc chloro sulfate (NaZn4(SO4)Cl(OH)6·6H2O), zinc hydroxy chloride, Zn5(OH)8Cl2·H2O and zinc hydroxy carbonate, Zn5(OH)6(CO3)2 were the first three phases were formed initially while zinc hydroxy carbonate Zn5(OH)6(CO3)2 was formed after prolonged exposure in more corrosive conditions. The initial corrosion product formation was due to selective corrosion of the zinc rich interdendritic areas of the coating resulting in a mixture of zinc and zinc aluminium corrosion products.  相似文献   

4.
To simulate the atmospheric corrosion of steels galvanized with Zn under different conditions, artificial zinc rusts of basic zinc salt (BZS) were prepared by hydrolyzing ZnO particles in aqueous solutions including ZnCl2, ZnSO4 and Zn(NO3)2. In ZnCl2–ZnSO4, ZnSO4–Zn(NO3)2 and ZnCl2–Zn(NO3)2–ZnSO4 systems, zinc hydroxysulfate (Zn4(OH)6(SO4nH2O) was formed while zinc hydroxychloride (Zn5(OH)8Cl2·H2O) was generated in ZnCl2–Zn(NO3)2 system. Zinc hydroxynitrate (Zn5(OH)8(NO3)2·2H2O) was yielded in only Zn(NO3)2 system. All the formed artificial zinc rusts were hexagonal plate particles. These results suggest that SOx is the most effective corrosive gas on the formation of BZS rusts on galvanized steel.  相似文献   

5.
NaCl induced atmospheric corrosion of ZnAl2Mg2 coated, electrogalvanised (EG) and hot dipped galvanised (HDG) steel was studied using in situ infrared reflection absorption spectroscopy, XRD and SEM. Initial corrosion leads to the formation of Mg/Al and Zn/Al layered double hydroxides (LDHs) on ZnAl2Mg2, due to the anodic dissolution of Zn–MgZn2 phases and cathodic oxygen reduction on Zn–Al–MgZn2, Al-phases and on zinc dendrites. In contrast to EG and HDG, were no ZnO and Zn5(OH)8Cl2⋅H2O detected. This is explained by the buffering effect of Mg and Al which inhibit the ZnO formation, reduce the cathodic reaction and corrosion rate on ZnAl2Mg2.  相似文献   

6.
Effects of NaCl and SO2 on the initial atmospheric corrosion of zinc   总被引:1,自引:0,他引:1  
The influence of NaCl deposition on the corrosion of zinc in atmospheres with and without SO2 was studied via quartz crystal microbalance. Regularity of the initial corrosion of zinc under these conditions was analyzed. The results show that NaCl can accelerate the corrosion of zinc. Mass gain of zinc increases with the exposure time, which can be correlated by using exponential decay function. The relationship between mass gain and amount of NaCl deposition is well linear at any time in air containing 1 ppm SO2, but follows quadratic function in air without SO2. More amount of NaCl deposition will slow down the corrosion to some extent after exposure for certain time in the presence of SO2. The combined effect of NaCl and SO2 on the corrosion of zinc is greater than that caused by each single component. Fourier transform infrared spectroscopy and X-ray diffraction were used to characterize the corrosion products of zinc. In the absence of SO2, simonkolleite, Zn5(OH)8Cl2·H2O and zincite, ZnO are the dominant corrosion products, while zinc hydroxysulfate (Zn4SO4(OH)6·3H2O), zinc chloride sulfate hydroxide hydrate (Zn12(SO4)3Cl3·(OH)15·5H2O) and simonkolleite dominate in the presence of SO2. Brief discussion on the mechanisms of atmospheric corrosion under these conditions was introduced.  相似文献   

7.
Initial corrosion and secondary spreading effects during NaCl particle induced corrosion on zinc was explored using in situ and ex situ FTIR microspectroscopy, optical microscopy, and SEM/EDAX. The secondary spreading effect which occurs upon introduction of humid air on NaCl deposited zinc surfaces was strongly dependent on the CO2 and SO2 content of the introduced air. Ambient level of CO2 (350 ppm) resulted in a relatively low spreading effect, whereas the lower level of CO2 (<5 ppm) caused a much faster spreading over a larger area. In the presence of SO2, the secondary spreading effect was absent which could limit the cathodic process in this case. At <5 ppm CO2, the corrosion is more localized, with the formation of simonkolleite (Zn5(OH)8Cl2 · H2O), zincite (ZnO) and sodium carbonate (Na2CO3), and a larger effective cathodic area. At 350 ppm CO2, the corrosion is more general and formation of simonkolleite, hydrozincite (Zn5(OH)6(CO3)2) and sodium carbonate was observed. Sodium carbonate was mainly formed in more alkaline areas, in the inner edge of the electrolyte droplet and in the secondary spreading area. Oxidation of sulphur and concomitant sulphate formation was enhanced in the presence of NaCl particles, due to the formation of a droplet, the separation of the anodic and cathodic areas and the accompanying differences in chemical composition and pH in the surface electrolyte.  相似文献   

8.
The corrosion layer formed on zinc sample in 0.6 M NaCl and 0.5 M NaOH solution under ambient conditions has been investigated. The corrosion layer morphology was analyzed using scanning electron microscopy (SEM). X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were used to characterize the corrosion products of zinc. The thickness evolution of the corrosion layer was investigated by glow discharge optical emission spectroscopy (GDEOS). The corrosion layer formed in 0.5 M NaOH solution appeared more compact than that formed in 0.6 M NaCl solution. Zinc hydroxide chloride (Zn5(OH)8Cl2·2H2O) and zinc hydroxide carbonate (Zn5(CO3)2(OH)6) were formed on zinc surface in 0.6 M NaCl solution while in 0.5 M NaOH solution, zinc oxide (ZnO), zinc hydroxide (Zn(OH)2) and zinc hydroxide carbonate (Zn5(OH)6(CO3)2·H2O) were detected. Probable mechanisms of zinc corrosion products formation are presented.  相似文献   

9.
Initial atmospheric corrosion of zinc in the presence of Na2SO4 and (NH4)2SO4 was investigated via quartz crystal microbalance(QCM) in laboratory at relative humidity(RH) of 80% and 25 °C. The results show that both Na2SO4 and (NH4)2SO4 can accelerate the initial atmospheric corrosion of zinc. The combined effect of Na2SO4 and (NH4)2SO4 on the corrosion of zinc is greater than that caused by (NH4)2SO4 and less than that caused by Na2SO4. Fourier transform infrared spectroscopy(FTIR), X-ray diffractometry(XRD) and scanning electron microscopy(SEM) were used to characterize the corrosion products of zinc. (NH4)2Zn(SO4)2, Zn4SO4(OH)6·5H2O and ZnO present on zinc surface in the presence of (NH4)2SO4 while Zn4SO4(OH)6·5H2O and ZnO are the dominant corrosion products on Na2SO4-treated zinc surface. Probable mechanisms are presented to explain the experimental results.  相似文献   

10.
Self-healing mechanism of a protective film against corrosion of zinc at scratches in an aerated 0.5 M NaCl solution was investigated by polarization measurements, X-ray photoelectron spectroscopy (XPS) and electron-probe microanalysis (EPMA). The film was prepared on a zinc electrode by treatment in a Ce(NO3)3 solution and addition of aqueous solutions containing 9.98 or 19.9 μg/cm2 of Zn(NO3)2 · 6H2O and 55.2 μg/cm2 of Na3PO4 · 12H2O. After the coated electrode was scratched with a knife-edge crosswise and immersed in the NaCl solution for many hours, polarization measurements, observation of pit formation at the scratches, XPS and EPMA were carried out. This film was remarkably protective and self-healing against zinc corrosion on the scratched electrode. The cathodic and anodic processes of zinc corrosion were markedly suppressed by coverage of the surface except for scratches with a thin Ce2O3 layer containing a small amount of Ce4+ and the surface of scratches with a layer composed of Zn3(PO4)2 · 4H2O, Zn(OH)2 and ZnO mostly.  相似文献   

11.
Abstract

This paper summarises the results obtained for galvanised steel specimens exposed in Saudi Arabia region for four years at four pure marine and five mixed marine (SO2 polluted) sites. The atmospheres at these sites were characterised climatologically and in terms of their pollution level so that their corrosivity could be expressed in accordance with ISO standards. Chemical characterisation of the galvanised steel corrosion product layers was performed using X-ray diffraction. The main phases determined were zincite (ZnO), simonkolleite [Zn5(OH)8Cl2.H2O], smithsonite (ZnCO3), magnetite (Fe3O4), gordaite [NaZn4(SO4)Cl(OH)6Cl.6(H2O)], hematite (Fe2O3), zinkosite (ZnSO4), zinc chloride (ZnCl2), zinc hydroxide sulphate hydrate [(Zn(OH)2)3(ZnSO4)(H2O)3] and zinc sulphate hydroxide hydrate [ZnSO4(OH)2.5H2O] was found on the specimens. The results obeyed well with the empirical kinetics equation of the form C?=?Ktn, where K and C are the corrosion losses in mg cm?2 after 1 and ‘t’ years of the exposure respectively, and ‘n’ is constant. Based on ‘n’ values, the corrosion mechanism of galvanised steel is predicted. The results obtained show that the corrosion rate of galvanised steel is a function of both the chloride, SO2 pollution level and the humidity. Corrosion rate of galvanised steel specimens have been obtained by loss of weight after each year of exposure.  相似文献   

12.
The morphology, composition, phase composition and corrosion products of coatings of pure Zn (obtained from two types of electrolytic bath: an acidic bath (Znacid) and a cyanide-free alkaline bath (Znalkaline)) and of Zn–Mn and Zn–Co alloys on steel substrates were studied. To achieve this, diverse techniques were used, including polarization curves, atomic force microscopy (AFM), scanning electron microscopy (SEM), glow discharge spectroscopy (GDS), X-ray diffraction (XRD), and the salt spray test. In the salt spray test, the exposure time required for the coatings to exhibit red corrosion (associated with the oxidation of steel) decreased in the following order: Zn–Mn(432h) > Zn–Co(429h) > Znalkaline(298h) > Znacid(216h). The shorter exposure times required for corrosion of the pure Zn coatings are related to the coating composition and the crystallographic structure. Analysis of the corrosion products disclosed that Zn5(OH)8Cl2·H2O was a corrosion product of all of the coatings tested. However, the formation of oxides of manganese (MnO, Mn0.98O2, Mn5O8) in the Zn–Mn coating, and the formation of the hydroxide Zn2Co3(OH)10·2H2O in the Zn–Co coating, produced more compact and stable passive layers, with lower dissolution rates.  相似文献   

13.
To simulate the atmospheric corrosion of steels galvanized with Ti–Zn alloys under different atmospheric temperatures, Ti(IV)-doped zinc hydroxychloride (Zn5(OH)8Cl2·H2O: ZHC) was prepared at various aging temperatures of 6–120 °C. Adding the Ti(IV) inhibited the crystallization and particle growth of ZHC, showing a minimum at 50 °C. Higher aging temperature promoted the formation of TiO2 nano-particles. Elevating the aging temperature suppressed the adsorption of H2O and CO2 on Ti(IV)-doped ZHC. These results suggest that the alloying Ti in galvanized steel forms compact zinc rust layer at various atmospheric temperatures in marine environment, which would lead to the enhancement of corrosion resistance.  相似文献   

14.
The corrosion behaviour of reinforcing steel in saturated naturally aerated Ca(OH)2 solutions in absence and presence of different concentrations of NaCl, NH4Cl, Na2SO4 and (NH4)2SO4 is followed by measuring of the open circuit potential complemented with SEM and EDS investigation. These salts cause breakdown of passivity and initiation of pitting corrosion. The rates of oxide film thickening by OH ions and oxide film destruction by the aggressive ions follow a direct logarithm law and depend on the concentration and type of aggressive salts anions and cations. The values of the activation energies for oxide film thickening are calculated and discussed.  相似文献   

15.
Copper plates were exposed under sheltered outdoor conditions for up to one year, starting in September 2001 in Musashino City, Tokyo, a suburban area. Following various periods of exposure, the patinas on the plates were characterized to investigate their evolution by using X-ray fluorescence analysis, X-ray diffraction, field emission scanning electron microscopy, and glow discharge optical emission spectroscopy. The difference in the roles of sulfur and chlorine in the early stages of copper patination were identified by analyzing the depth profiles of these two elements. Sulfur was found on top of the patina as cupric sulfates such as posnjakite (Cu4SO4(OH)6 · H2O) or brochantite (Cu4SO4(OH)6). Brochantite appeared only after 12 months of exposure. In contrast, chlorine was found on the surface after only one month of exposure. It gradually penetrated the patina as the exposure period lengthened, forming copper chloride complexes. Chloride ions accumulated at the patina/copper interface, forming nantokite (CuCl), which promoted corrosion.  相似文献   

16.
We applied shadowgraphy and Mach-Zehnder interferometry to investigate concentration field of Zn2+ above a Zn/steel couple in 0.01 M NaCl. During galvanic corrosion, the marked changes in the concentration of Zn2+ were visualized in a thin solution layer less than 0.5 mm thick above zinc. The concentration profile of Zn2+ was also obtained by analyzing the deflection of interference fringes. The obtained concentration profile was in good agreement with that obtained by our group with a scanning probe technique. The formation of zinc corrosion products was also visualized, which occurring on the steel surface a certain distance away from zinc.  相似文献   

17.
The corrosion products formed on the inner wall of pipes made of galvanized low carbon steel, exposed for ∼2 years to water flowing in a large household heating system, were analysed using X-ray diffraction, Mössbauer and Raman spectroscopic techniques, as well as metallographic techniques. Products grew in the form of large-sized tubercles that gradually developed causing base metal losses up to perforation of the steel pipe. Considerable differences in the phase composition were found between the products formed in contact with the steel and those constituting the outer part of tubercles. The former were mainly made of FeCO3 (siderite), with small amounts of Zn5(CO3)2(OH)6 (hydrozincite), ZnCO3 (smithsonite), (Fe,Zn)CO3 mixed carbonate and CaCO3 (calcite), the latter mainly by Fe(III) oxyhydroxide goethite. Both parts of the tubercles also contained small amounts of other ferric oxyhydroxides, γ-FeOOH (lepidocrocite) and β-FeOOH (akaganeite), and very small amounts of hematite. The procedures used proved effective for an adequate identification of both the iron-containing and iron-free compounds in the corrosion products as well as for suggesting a corrosion mechanism.  相似文献   

18.
Qing Qu  Lei Li  Chuanwei Yan 《Corrosion Science》2005,47(11):2832-2840
Effects of NaCl and NH4Cl on the initial atmospheric corrosion of zinc were investigated via quartz crystal microbalance (QCM) in laboratory at 80% RH and 25 °C. The results show that both NaCl and NH4Cl can accelerate the initial atmospheric corrosion of zinc. The combined effect of NaCl and NH4Cl on the corrosion of zinc is greater than that caused by NH4Cl and less than that caused by NaCl. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy and electron dispersion X-ray analysis (SEM/EDAX) were used to characterize the corrosion products of zinc. (NH4)2ZnCl4, Zn5(OH)8Cl2 · H2O and ZnO present on zinc surface in the presence of NH4Cl while Zn5(OH)8Cl2 · H2O and ZnO are the dominant corrosion products on NaCl-treated zinc surface. Probable mechanisms are presented to explain the experimental results.  相似文献   

19.
To simulate the corrosion of galvanized steel in marine zone, β-FeOOH was prepared by aging the FeCl3 solutions containing ZnCl2 and zinc rusts such as ZnO and zinc hydroxychloride (Zn5(OH)8Cl2·H2O:ZHC). Adding ZnCl2, ZnO, and ZHC inhibited the crystallization and particle growth of β-FeOOH and the inhibitory effect was in order of ZHC ≈ ZnO > ZnCl2. The adsorption of H2O and CO2 was suppressed by adding ZnCl2, ZnO, and ZHC. These results imply that the rust formed on galvanized steel in marine environment is more compact, amorphous, and hydrophobic in nature which may lead to improve the corrosion resistance.  相似文献   

20.
Corrosion resistance of zinc-magnesium coated steel   总被引:1,自引:0,他引:1  
A significant body of work exists in the literature concerning the corrosion behaviour of zinc-magnesium coated steel (ZMG), describing its enhanced corrosion resistance when compared to conventional zinc-coated steel. This paper begins with a review of the literature and identifies key themes in the reported mechanisms for the attractive properties of this material. This is followed by an experimental programme where ZMG was subjected to an automotive laboratory corrosion test using acidified NaCl solution. A 3-fold increase in time to red rust compared to conventional zinc coatings was measured. X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy were used to characterize the corrosion products formed. The corrosion products detected on ZMG included simonkolleite (Zn5Cl2(OH)8 · H2O), possibly modified by magnesium uptake, magnesium hydroxide (Mg(OH)2) and a hydroxy carbonate species. It is proposed that the oxygen reduction activity at the (zinc) cathodes is reduced by precipitation of alkali-resistant Mg(OH)2, which is gradually converted to more soluble hydroxy carbonates by uptake of atmospheric carbon dioxide. This lowers the surface pH sufficiently to allow thermodynamically for general precipitation of insoluble simonkolleite over the corroding surface thereby retarding the overall corrosion reactions, leaving only small traces of magnesium corrosion products behind. Such a mechanism is consistent with the experimental findings reported in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号