首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ferroelectric Pb(ZrxTi1-x)O3 (PZT) thin films were successfully deposited on Pt/Ti/SiO2Si substrates by metalorganic chemical vapor deposition (MOCVD). Pb(C2H5)4, Zr(O-t-C4H9)4, and Ti(O-i-C3H7)4 were used as metalorganic precursors. Variations in crystalline structure, surface morphology, and grain size of deposited films were systematically investigated as a function of process parameters by using X-ray diffraction and scanning electron microscopy. The deposition temperature and gas composition in the reactor are the main parameters that control the microstructure and composition of films. An interrelationship between the grain orientation and surface roughness of the films was found. Films with (111) preferred orientation are significantly smoother than films with other preferred orientations. The ferroelectric properties of the films were also measured by RT66A ferroelectric tester for hysteresis loop and fatigue property. Electrical measurements revealed that the films had good ferroelectric characteristics with the high remanant polarization (32 μC/cm2) and low coercive voltage (1.1 V).  相似文献   

2.
Ferroelectric Pb(Zr0.52 Ti0.48)O3 thin films were prepared by sol-gel processing on the Pt/Ti/SiO2/Si(100) substrates. Effects of the concentration (0.2–0.8 M) of the starting solution (Pb/Zr/Ti= 1.1/0.52/0.48) and the sintering temperature (500–700 ‡C) on crystallinity, microstructure and electrical properties of PZT thin films were investigated. For the thin film prepared at 0.4 M starting solution, the highest crystallinity appeared at a sintering temperature of 650 ‡C. The average grain size of the PZT thin films was about 0.17 Μm. The film thickness was about 0.2 Μm. The relative dielectric constant and the dissipation factor of the film measured at 1 kHz were about 750 and 4.3%, respectively. The remnant polarization (Pr) and coercive field (Ec) of the film measured at the applied voltage of 5 V were about 49 ΜC/cm2 and 134 kV/cm, respectively.  相似文献   

3.
In this study, ternary ferroelectric 0.06Pb(Mn1/3Nb2/3)O3–0.94Pb(Zr0.48Ti0.52)O3 (PMN–PZT) thin film with high piezoelectric coefficient were grown on La0.6Sr0.4CoO3-buffered Pt/Ti/SiO2/Si substrate by RF magnetron sputtering method. The phase and domain structure along with the macroscopic electrical properties were obtained. Under the optimized temperature of 550°C and sputtering pressure 0.9 Pa, the PMN–PZT film owned large remnant ferroelectric polarization of 62 μC/cm2. In addition, the PMN–PZT film had polydomain structures with fingerprint-type nanosized domain patterns and typical local piezoelectric response. Through piezoelectric force microscopy, the PMN–PZT thin film at nanoscale exhibited obvious domain reversal when subjected to in situ poling field. It was further found that the quasi-static piezoelectric coefficient of the PMN–PZT thin film reached 267 pC/N, which was about twice to that of the commercial PbZrO3–PbTiO3 (PZT) thin film. The optimized relaxor ferroelectric thin film PMN–PZT on silicon with global electrical properties shows great potential in the piezoelectric micro-electro-mechanical systems applications.  相似文献   

4.
《Ceramics International》2017,43(16):13063-13068
PbTiO3 (PTO), Pb(Mn0.1Ti0.9)O3 (PMTO), Pb(Sr0.1Ti0.9)O3 (PSTO), and Pb(Zr0.1Ti0.9)O3 (PZTO) were prepared on an indium tin oxide (ITO)/glass substrate by a sol-gel method. PTO, PMTO, PSTO, and PZTO films exhibited energy band gaps of 3.55 eV, 3.63 eV, 3.59 eV, and 3.66 eV, respectively. All these films generated high photocurrents due to high shift currents, because carrier migration channels were successfully introduced by a lattice mismatch between the films and ITO substrates. The PMTO thin film exhibited the best ferroelectric and photovoltaic properties, with a photovoltage of 0.74 V, a photocurrent density of 70 μA/cm2, and a fill factor of 43.34%, which confirms that shift current and ferroelectric polarization are two main factors that affect the ferroelectric photovoltaic properties. The PSTO, PZTO, and PTO thin films displayed space-charge-limited current (SCLC) when the electric field strength was below 10 kV/cm, and these three films broke down when the electric field strength was above 10 kV/cm. Analysis of the shift current mechanism confirmed that the breakdown of the PZTO and PSTO thin films resulted from Pool Frenkel emission current. The PMTO thin film displayed SCLC in the test range, which indicates that doping with Mn could inhibit defect formation in ferroelectric thin films.  相似文献   

5.
Ferroelectric ceramics in specific composition of 0.95Pb(ZrxTi1?x)O3–0.05Pb(Mn1/3Nb2/3)O3 or PZT–PMnN (with x=0.46, 0.48, 0.50, 0.52, and 0.54) have been investigated in order to identify the morphotropic phase boundary (MPB) composition. The effects of Zr/Ti ratio on phase formation, dielectric and ferroelectric properties of the specimens have also been investigated and discussed. X-ray diffraction patterns indicate that the MPB of the tetragonal and rhombohedral phase lies in x=0.52. The crystal structure of PZT–PMnN appeared to change gradually from tetragonal to rhombohedral phase with increasing Zr content. The dielectric and ferroelectric properties measurements also show a maximum value (εr, tan δ and Pr) at Zr/Ti=52/48, while the transition temperature decreases with increasing Zr content.  相似文献   

6.
《Ceramics International》2017,43(8):6008-6012
The variation of the chemical composition and properties of PZT films as a function of oxygen pressure and laser fluence during pulsed laser deposition is used to tune the electrical properties of the PZT thin films. It is found that the deposition using a 248 nm laser fluence of 1.7 J/cm2 and an oxygen pressure of 400 mtorr results the PZT films very similar to that of target material. Changing the laser fluences or oxygen pressure, affects the lead content of the deposited film. In the range of oxygen pressure 50–200 mtorr, the Zr/Zr+Ti and Ti/Zr+Ti ratio varies with oxygen pressure while the Pb/Zr+Ti ratio is almost uniform. Using oxygen pressure as a control parameter to tune the chemical compound and electrical properties of the deposited PZT films, the remnant polarization of the PZT films is tuned in the range of 6.6–42.2 µC/cm2, the dielectric constant is controlled in the range of 29–130, and the piezoelectric constant d33 is controlled in the range of 3.82–4.96 pm/V for a 40 nm thick PZT film.  相似文献   

7.
In this study, Pb(Zr0.52Ti0.48)O3/BiFeO3 [PZT/BFO] multilayer thin films were fabricated using the spin-coating method on a Pt(200 nm)/Ti(10 nm)/SiO2(100 nm)/p-Si(100) substrate alternately using BFO and PZT metal alkoxide solutions. The coating-and-heating procedure was repeated several times to form the multilayer thin films. All PZT/BFO multilayer thin films show a void-free, uniform grain structure without the presence of rosette structures. The relative dielectric constant and dielectric loss of the six-coated PZT/BFO [PZT/BFO-6] thin film were approximately 405 and 0.03%, respectively. As the number of coatings increased, the remanent polarization and coercive field increased. The values for the BFO-6 multilayer thin film were 41.3 C/cm2 and 15.1 MV/cm, respectively. The leakage current density of the BFO-6 multilayer thin film at 5 V was 2.52 × 10-7 A/cm2.  相似文献   

8.
用射频磁控溅射法在Pt(111)/Ti/SiO2/Si上成功的制备了Pb(zr0.55Ti0.45)O3(PZT)铁电薄膜,通过传统退火(CFA)和快速退火(RTA)不同的退火方式,获得了(100)和(111)择优取向的铁电薄膜。对薄膜电学特性的测试表明,薄膜的织构对其电学性能有很大影响,(111)取向的薄膜与(100)取向的薄膜相比,剩余极化Pr和矫顽场Ec较大,但抗疲劳特性却较差。  相似文献   

9.
The polarization hysteresis loops and the dynamics of domain switching in ferroelectric Pb(Zr0.52Ti0.48)O3 (PZT), antiferroelectric PbZrO3 (PZ) and relaxor-ferroelectric Pb0.9La0.1(Zr0.52Ti0.48)O3 (PLZT) thin films deposited on Pt/Ti/SiO2/Si substrates were investigated under various bipolar electric fields during repetitive switching cycles. Fatigue behavior was observed in PZT thin films and was accelerated at higher bipolar electric fields. Degradation of energy storage performance observed in PZ thin films corresponds to the appearance of a ferroelectric state just under a high bipolar electric field, which could be related to the nonuniform strain buildup in some regions within bulk PZ. Meanwhile, PLZT thin films demonstrated fatigue-free in both polarization and energy storage performance and independent bipolar electric fields, which are probably related to the highly dynamic polar nanodomains. More importantly, PLZT thin films also exhibited excellent recoverable energy-storage density and energy efficiency, extracted from the polarization hysteresis loops, making them promising dielectric capacitors for energy-storage applications.  相似文献   

10.
《Ceramics International》2020,46(2):1281-1296
Pb(Zr,Ti)O3 (PZT) ferroelectric ceramic films exhibit highly superior ferroelectric, pyroelectric and piezoelectric properties which are promising for a number of applications including non-volatile random access memory devices, non-linear optics, motion and thermal sensors, tunable microwave systems and in energy harvesting (EH) use. In this research, a thin layer of PZT was deposited on two different substrates of Strontium Titanate (STO) and Strontium ruthenate (SRO) by powder magnetron sputtering (PMS) system. The preliminary powders, consisting of PbO, ZrO2 and TiO2, were manually mixed and placed into the target holder of the PMS. The deposition was performed at an elevated temperature reaching up to 600 °C via a ceramic heater. This high temperature is required for PZT thin film crystallinity, which is never achieved in conventional physical vapour deposition processes. The phase structure, crystallite size, stress-strain and surface morphology of deposited thin films were characterized using X-ray Diffraction (XRD) and Field Emission Scanning Electron Microscopy (FESEM). The composition of the PZT thin films were also analysed by X-ray photoelectron spectroscopy (XPS). The mechanical properties of the thin films were evaluated with micro-scratch adhesive strength and micro hardness equipment. FESEM results showed that the PZT thin films were successfully deposited on both SRO and STO substrates. The surfaces of the coated samples were free from cracks, relatively smooth, uniform and dense. The profile of X-ray diffraction confirmed the formation of single-c-domain/single crystal perovskite phase grown on both substrates. The XPS analysis have shown that the PZT thin film grown by this method and that a target of PZT+10% PbO is a proper target for growing nominal PZT thin films. The adhesion strength and micro hardness results have confirmed the stability and durability of the thin film on the substrates, although higher values have been reported for thin film of PZT deposited on SRO surfaces.  相似文献   

11.
《Ceramics International》2016,42(13):14431-14437
Lead zirconate titanate Pb(ZrxTi1−x)O3 films with various Zr/Ti ratios of 20/80, 40/60, 52/48, 60/40 and 80/20 are deposited on highly dense CoFe2O4 ceramics using a simple chemical solution deposition. All Pb(ZrxTi1−x)O3 films are polycrystalline and have no preferential orientations. The dielectric, ferroelectric, piezoelectric and magnetoelectric properties strongly depend on the Zr/Ti ratio. And the Pb(ZrxTi1−x)O3 films with a Zr/Ti ratio close to morphotropic phase boundary exhibit best properties, whose magnetoelectric coefficient is over 1.5 times larger than those of other Zr/Ti ratios. The introduction of a PbO seeding layer between the Pb(Zr0.52Ti0.48)O3 films and CoFe2O4 substrates facilitates the (100)-texture. Therefore, the magnetoelectric coefficient was enhanced by 1.5 times. The further improvement of the magnetoelectric coupling could be anticipated by fabricating Pb(Zr0.52Ti0.48)O3 films with more or absolute (100)-texture and using conductive interfacial layer between two phases.  相似文献   

12.
High-quality ternary relaxor ferroelectric (100)-oriented Mn-doped 0.36Pb(In1/2Nb1/2)O3-0.36Pb(Mg1/3Nb2/3)O3-0.28PbTiO3 (Mn-PIMNT) thin films were grown on SrRuO3-buffered SrTiO3 single-crystal substrate in a wide deposition temperature range of 550-620°C using the pulsed laser deposition method. The phase structure, ferroelectric, dielectric, piezoelectric properties, and nanoscale domain evolution were studied. Under the deposition temperature of 620°C, the ferroelectric hysteresis loops and current-voltage curves showed that the film owned significantly enhanced remnant ferroelectric polarization of 34.5 μC/cm2 and low leakage current density of 2.7 × 10−10 A/cm2. Moreover fingerprint-type nanosized domain patterns with polydomain structures and well-defined macroscopic piezoelectric properties with a high normalized strain constant of 40 pm/V was obtained. Under in situ DC electric field, the domain evolution was investigated and 180° domain reversal was observed through piezoelectric force microscope. These global electrical properties make the current Mn-PIMNT thin films very promising in piezoelectric MEMS applications.  相似文献   

13.
We present a conformal method of growing ferroelectric lead hafnate-titanate (PbHfxTi1−xO3, PHT) and lead zirconate-titanate (PbZrxTi1−xO3, PZT) using atomic layer deposition (ALD) precursors. The 4+ cation precursors consist of tetrakis dimethylamino titanium (TDMAT), tetrakis dimethylamino zirconium (TDMAZ) and tetrakis dimethyl amino hafnium (TDMAH) for Ti, Zr, and Hf, respectively. The Pb (2+) precursor was Lead bis(3-N,N-dimethyl-2-methyl-2-propanoxide) [Pb(DMAMP)2]. PZT was limited to lead titanate (PTO)-rich compositions, where x <0.25 for PbZrxTi1−xO3, and exhibited a remnant polarization of 26-27 µC/cm2 with a coercive field between 150 and 170 kV/cm. The 3D-structure coating capability of PZT was demonstrated by deposition on micromachined trench sidewalls 45 µm deep. We fabricated Microelectromechanical systems (MEMS) cantilever arrays with PZT thin films grown using the present method and demonstrated piezoelectric actuation. Alternatively, PHT was deposited with Ti and Hf compositions within ±1 at.% of the morphotropic phase boundary (MPB). The PHT exhibited a remanent polarization of 7.0-8.7 µC/cm2 with a coercive field between 84-100 kV/cm. We applied the same Pb and Hf precursors from the PHT process to grow antiferroelectric lead-hafnate (PHO), which showed the characteristic electric field-induced ferroelectric phase transition at approximately ±280 kV/cm and a maximum polarization of approximately ±32.8 µC/cm2.  相似文献   

14.
This study demonstrates the modulation of off‐resonance magnetoelectric (ME) response of the Pb(Zr,Ti)O3 (PZT)/ Metglas (FeBSi) bilayered composite by laser annealing. A continuous‐wave 532 nm Nd:YAG laser with varying fluences (210–390 J/mm2) was utilized to anneal the 2 μm thick PZT film deposited using granule spray in vacuum (GSV) technique on magnetostrictive amorphous Metglas foil. It was found that the dielectric and ferroelectric properties of the PZT film are strongly affected by the exposure to laser fluence. The ME voltage coefficient of PZT/Metglas increased with the fluence up to 345 J/mm2, reaching a high value of 880 mV/cm·Oe. The electrical and ME properties were correlated with the changes observed in crystallinity and grain size of the PZT film as well as with the alterations in microstructure and magnetic behavior of Metglas. Our results demonstrate that enhanced ME coupling can be realized in PZT/Metglas film composites by controlling the laser fluence.  相似文献   

15.
The crystallization of lead zirconate titanate (PZT) thin films was evaluated on two different platinum‐coated Si substrates. One substrate consisted of a Pt coating on a Ti adhesion layer, whereas the other consisted of a Pt coating on a TiO2 adhesion layer. The Pt deposited on TiO2 exhibited a higher degree of preferred orientation than the Pt deposited on Ti (as measured by the Full Width at Half Maximum of the 111 peak about the sample normal). PZT thin films with a nominal Zr/Ti ratio of 52/48 were deposited on the substrates using the inverted mixing order (IMO) route. Phase and texture evolution of the thin films were monitored during crystallization using in situ X‐ray diffraction at a synchrotron source. The intensity of the Pt3Pb phase indicated that deposition on a highly oriented Pt/TiO2 substrate resulted in less diffusion of Pb into the substrate relative to films deposited on Pt/Ti. There was also no evidence of the pyrochlore phase influencing texture evolution. The results suggest that PZT nucleates directly on Pt, which explains the observation of a more highly oriented 111 texture of PZT on the Pt/TiO2 substrate than on the Pt/Ti substrate.  相似文献   

16.
Lead zirconium titanate [Pb(ZrxTi1?x)O3 or PZT] thin films were prepared by the thermal annealing of multilayer films composed of binary oxide layers of PbO, ZrO2 and TiO2. The binary oxides were deposited by metal organic chemical vapor deposition. An interdiffusion reaction for perovskite PZT thin films was initiated at approximately 550 °C and nearly completed at 750 °C for 1 h under O2 annealing atmosphere. The composition of Pb/Zr/Ti in perovskite PZT could be controlled by the thickness ratio of PbO/ZrO2/TiO2 where the contribution of each binary oxide at the same thickness was 1:0.55:0.94. The electrical properties of PZT (Zr/Ti = 40/60, 300 nm) prepared on a Pt-coated substrate included a dielectric constant ?r of 475, a coercive field Ec of 320 kV/cm, and remnant polarization Pr of 11 μC/cm2 at an applied voltage of 18 V.  相似文献   

17.
Charge transport mechanisms governing DC resistance degradation in ferroelectric films are influenced by defects, particularly oxygen vacancies. This paper demonstrates that oxygen vacancies migrate in lead zirconate titanate (PZT) films under a DC bias field and contribute to resistance degradation. Model PZT thin films were developed in which the concentration and distribution of oxygen vacancies were controlled via (a) changing the dopant type and concentration from 1%–4% Mn (acceptor) to 1%–4% Nb (donor) or (b) annealing undoped PZT films at varying partial pressures of PbO. The presence of associated (immobile) and dissociated (mobile) oxygen vacancies was distinguished by thermally stimulated depolarization current (TSDC) measurements. The impact of mobile oxygen vacancies on local defect chemistry and associated charge transport mechanisms was explored by electron energy loss spectroscopy (EELS). For Mn-doped PZT films, following resistance degradation, TSDC studies revealed only one depolarization peak with an activation energy of 0.6–0.8 eV; this peak was associated with ionic space charge presumably due to migration of oxygen vacancies. The magnitude of the depolarization current peak increased with increasing degradation times. A similar depolarization current peak attributed to the existence of mobile oxygen vacancies was also observed for undoped and Nb-doped PZT films; the magnitude of this peak decreased as the Nb or PbO contents in PZT films increased. An additional TSDC peak associated with polaron hopping between Ti3+ and Ti4+ was found in both Nb-doped PZT films and undoped PZT films annealed under low PbO partial pressure. Degraded Nb-doped samples exhibited a chemical shift in the TiL2,3 peak to lower energy losses and the appearance of shoulders on the t2g and eg peaks, implying a reduction of Ti cations in regions near the cathode.  相似文献   

18.
It has been recognized that the interdiffusion of atomic species between a PZT film and the Pt bottom electrode leads to the gradual degradation of a PZT capacitor. In order to prevent this interdiffusion, experimental studies on chemical passivation to the bottom electrode surface were carried out by the sulfurization method. It was observed that a sulfur layer was built up on the Pt substrate with small grains, which resulted in a structural change at the Pt surface. Atomic force microscopy (AFM) showed that the film roughness of the Pt surface was increased by sulfur treatment. Pb(Zr0.5Ti0.5)O3(PZT) thin films were prepared on a Pt/Ti/SiO2Si bottom electrode by spin-coating techniques. The microstructure and the preferred orientation of the PZT films were shown to depend on the sulfur-treated electrode. The PZT capacitor on a clean Pt electrode was confirmed to be ferroelectric with Pr=17.7 μC/cm2 and Ec=65 kV/cm from the P-E hysteresis curves. The fatigue behavior of a PZT film capacitor prepared on a sulfur-treated one was observed to be relaxed, but the absolute value of Pr was paid off.  相似文献   

19.
0.2PbNi1/3Nb2/3–0.8Pb(Zr,Ti)O3 (PNN–PZT) thick films were deposited on Pt wire with the diameter of 50 μm by electrophoretic deposition (EPD) method. The EPD deposition times on the microstructures of PNN–PZT thick films were investigated. By optimizing the EPD process, the Pt wire can be uniformly wrapped with the PNN–PZT powders. During the sintering process, the as-deposited PNN–PZT/Pt wires were buried in the mixed powders of PbCO3 and ZrO2, and then sintered in the optimal temperature to get a dense microstructure. The piezoelectric properties of the thick films were characterized by scanning force microscopy (SFM) method. The results show that the PNN–PZT thick films prepared by EPD method have good piezoelectricity.  相似文献   

20.
The negative electric field, field cycling and frequency dependence of strain memory effect in poled and aged Mn‐doped Pb(Mn1/3Sb2/3)O3–Pb(Zr,Ti)O3 (PMS–PZT) piezoceramics under sesquipolar loading were investigated. The strain memory effect of Mn‐doped PMS–PZT is especially sensitive to the applied negative electric field. Maximum strain memory of 0.32% is achieved when the negative electric field is around negative coercive field of ~2.1 kV/mm, which can be ascribed to the partially depoled state with randomized domains. And this strain memory shows very good cycling stability, varying less than 5% up to 104 cycles, while almost 40% degradation is found under bipolar signal. In addition, due to the stabilized defect dipoles, the strain memory exhibits stable characteristic over a broad frequency range from 0.01 Hz to 20 Hz. The results may shed new insights into designing the novel strain memory actuators where stable strain state could be realized after the removal of electric field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号