首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Journal of power sources》2006,160(1):252-257
The bipolar plates are in weight and volume the major part of PEM fuel cell stack, and also a significant effect to the stack cost. To develop the low-cost and low-weight bipolar plate for PEM fuel cell, we have developed a kind of cheap expanded graphite plate material and a production process for fuel cell bipolar plates. The plates have a high electric conductivity and low density, and can be stamped directly forming fuel cell bipolar plates. Then, 1 and 10 kW stacks using expanded graphite bipolar plates are successfully assembled. The contact resistance of the bipolar plate is investigated and the electrochemical performances of the fuel cell stacks are tested. Good fuel cell performance is obtained and the voltage distribution among every single cell in the stacks is very uniform.  相似文献   

2.
Metallic bipolar plates have several advantages over bipolar plates made from graphite and composites due to their high conductivity, low material and production costs. Moreover, thin bipolar plates are possible with metallic alloys, and hence low fuel cell stack volume and mass are. Among existing fabrication methods for metallic bipolar plates, stamping and hydroforming are seen as prominent approaches for mass production scales. In this study, the effects of important process parameters of these manufacturing processes on the corrosion resistance of metallic bipolar plates made of SS304 were investigated. Specifically, the effects of punch speed, pressure rate, stamping force and hydroforming pressure were studied as they were considered to inevitably affect the bipolar plate micro-channel dimensions, surface topography, and hence the corrosion resistance. Corrosion resistance under real fuel cell conditions was examined using both potentiodynamic and potentiostatic experiments. The majority of the results exhibited a reduction in the corrosion resistance for both stamped and hydroformed plates when compared with non-deformed blank plates of SS304. In addition, it was observed that there exist an optimal process window for punch speed in stamping and the pressure rate in hydroforming to achieve improved corrosion resistance at a faster production rate.  相似文献   

3.
《Journal of power sources》1986,18(4):317-335
Fuel cells as direct energy converters will find wide application in a future hydrogen economy. At the Institute for Hydrogen Systems (IHS) emphasis was placed on designing a mass producible, low, cost, alkaline, bipolar fuelcell. Carbon-filled plastics are used in the construction of the fuel cell stack. Teflon bonded, multi ayer carbon electrodes have been developed. The pretreatment of carbon materials proved necessary to prolong the life of the electrodes. Electrocatalysis work resulted in the replacement of the noble metal electrocatalyst of the cathode and a significant reduction in the loading of the anode. The material cost of the alkaline, bipolar hydrogen-air fuel cell currently stands at Can $250 (US $175) per kW.  相似文献   

4.
Bipolar plates include separate gas flow channels for anode and cathode electrodes of a fuel cell. These gases flow channels supply reactant gasses as well as remove products from the cathode side of the fuel cell. Fluid flow, heat and mass transport processes in these channels have significant effect on fuel cell performance, particularly to the mass transport losses. The design of the bipolar plates should minimize plate thickness for low volume and mass. Additionally, contact faces should provide a high degree of surface uniformity for low thermal and electrical contact resistances. Finally, the flow fields should provide for efficient heat and mass transport processes with reduced pressure drops. In this study, bipolar plates with different serpentine flow channel configurations are analyzed using computational fluid dynamics modeling. Flow characteristics including variation of pressure in the flow channel across the bipolar plate are presented. Pressure drop characteristics for different flow channel designs are compared. Results show that with increased number of parallel channels and smaller sizes, a more effective contact surface area along with decreased pressured drop can be achieved. Correlations of such entrance region coefficients will be useful for the PEM fuel cell simulation model to evaluate the affects of the bipolar plate design on mass transfer loss and hence on the total current and power density of the fuel cell.  相似文献   

5.
《Journal of power sources》2006,159(2):1095-1104
Several kinds of metallic bipolar plates for PEMFCs are currently being developed in order to meet the demands of cost reduction, stack volume, lower weight and enhanced power density. This work shows an application of the Technique of ranking Preferences by Similarity to the Ideal Solution (TOPSIS) Multiple Attribute Decision Making (MADM) method for solving the material selection problem of metallic bipolar plates for polymer electrolyte fuel cell (PEFC), which often involves multiple and conflicting objectives. The proposed methodological tool can aid the material designer in the modeling and selection of suitable materials according to a set of predefined criteria. After introducing the theoretical background, a case study is presented for the material selection of a bipolar plate in a PEFC. A list of all possible choices, from the best to the worst materials, is obtained by taking into account all the material selection criteria, including the cost of production. A user-defined code in Mathematica has been developed to facilitate the implementation of the method. It was shown that the optimum value of each criterion is independent of other criteria values (i.e., no interaction is allowed). The proposed approach may be applied to other problems of material selection of fuel cell components.  相似文献   

6.
In this study, 304 stainless steel (SS) bipolar plates are fabricated by flexible forming process and an amorphous carbon (a-C) film is coated by closed field unbalanced magnetron sputter ion plating (CFUBMSIP). The interfacial contact resistance (ICR), in-plane conductivity and surface energy of the a-C coated 304SS samples are investigated. The initial performance of the single cell with a-C coated bipolar plates is 923.9 mW cm−2 at a cell voltage of 0.6 V, and the peak power density is 1150.6 mW cm−2 at a current density of 2573.2 mA cm−2. Performance comparison experiments between a-C coated and bare 304SS bipolar plates show that the single cell performance is greatly improved by the a-C coating. Lifetime test of the single cell over 200 h and contamination analysis of the tested membrane electrode assemble (MEA) indicate that the a-C coating has excellent chemical stability. A 100 W-class proton exchange membrane fuel cell (PEMFC) short stack with a-C coated bipolar plates is assembled and shows exciting initial performance. The stack also exhibits uniform voltage distribution, good short-term lifetime performance, and high volumetric power density and specific power. Therefore, a-C coated 304SS bipolar plates may be practically applied for commercialization of PEMFC technology.  相似文献   

7.
The polymer electrolyte membrane (PEM) based fuel cells are clean alternative energy systems that hold excellent potential for cost effectiveness, durability, and relatively high overall efficiency. PEM fuel cell is recognized by the U.S. Department of Energy (DOE) as the main candidate to replace the internal combustion engine in transportation applications. Metallic bipolar plates and membrane electrode assembly (MEA) are two crucial components of a PEM power stack and their durability and fabrication cost must be optimized to allow fuel cells to penetrate the commercial market and compete with other energy sources.  相似文献   

8.
Finding the optimal flow pattern in bipolar plates of a proton exchange membrane is a crucial step for enhancing the performance of the device. This design plays a critical role in fluid mass transport through microporous layers, charge transfer through conductive media, management of the liquid water produced in microchannels, and microporous layers and heat management in fuel cells. This article investigates different types of common flow patterns in bipolar plates while considering a uniform pressure and velocity distribution as well as a uniform distribution of reactants through all the surfaces of the catalyst layer as the design criteria so that there would be a consistent electron production by the catalyst layer. Then, by identifying the important parameters in achieving the best performance of a fuel cell, a microfluidic flow pattern is inspired from the lungs in the human body, and an innovative bipolar plate is suggested, which was not proposed before. Afterwards, numerical simulations were carried out using computational fluid dynamics methods, and the mentioned bipolar plate called lung‐shaped bipolar plate was modeled. Simulations in this research showed that the lung‐shaped microfluidic flow pattern is an appropriate flow pattern to gain maximum power and energy density. In other words, the best polarization curve and power density curve are obtained by using the lung‐shaped bipolar plate in a proton exchange membrane fuel cell compared with previously suggested patterns. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
Conventional bipolar plates for proton exchange membrane (PEM) fuel cells use extra rubber gaskets to seal the stack, which require an additional curing process at high temperature and increase the manufacturing and assembling time. To reduce the assembling time of fuel cell stacks and achieve gas sealability without using extra gaskets or curing cycles, innovative gasketless carbon composite bipolar plates were developed. To ease the assembling of the cell stacks, special grooves on the edge of the composite bipolar plate are provided for mechanical joining and the behavior of the bipolar plates under the stack compaction pressure conditions was investigated by FE analysis. The mechanical properties of the grooves were measured by the compressive strength test and compared with the FE analysis results. The sealability of the gasketless bipolar plate with grooves was tested to verify the integrity of the design.  相似文献   

10.
《Journal of power sources》2006,153(1):125-129
This work mainly emphasizes the development of new materials and design for a bipolar/end plate in a direct methanol fuel cell (DMFC). According to the DOE requirements, preliminary studies show that SS 316 (Stainless Steel 316) is a suitable candidate. Several flow field designs were studied and a modified serpentine design was proposed. SS 316 end plates were fabricated with an intricate modified serpentine flow field design on it. The performance of a single stack DMFC with SS 316 end plates were studied with different operational parameters. A long-term test was carried out for 100 h with recycling the methanol and the contaminants in the MEA were characterized. The stack efficiency is found to be 51% and polarization losses are discussed. SS 316 with low permeability resulted in an increased pressure drop across the flow field, which increased the fuel cell performance. The use of SS 316 as bipolar plate material will reduce the machining cost as well as volume of the fuel cell stack.  相似文献   

11.
A passive micro direct methanol fuel cell (DMFC) for reducing volume and parasitic power is designed and fabricated using several integrated technologies. New bipolar plates with tapered channels at the anode and a pillar array at the cathode are first applied to a passive micro-DMFC. The substrate of the bipolar plates made of acrylonitrile butadiene styrene (ABS) is hot embossed with two molds, fabricated by UV-LIGA and micro machining. To make the bipolar plates conductive and hydrophilic, a nickel layer is electroplated on the ABS plates, and three PDDA/PSS bi-layers are self-assembled onto the nickel layer. The bipolar plates are produced using hot embossing, a low cost, highly accurate batch process. A single cell is assembled to verify the self-pumping function, and it can generate a peak power density of 7.4 mW cm−2 with a 3 M methanol solution. The fuel cell is verified to work in three different orientations. When the fuel cell is placed horizontally, the self-pumping rate is about 0.1-0.15 mL h−1. And the fuel cell can work through self-pumping for 5 h under this condition.  相似文献   

12.
Polymer electrolyte membrane fuel cell performance strongly depends on properties of the fuel cell stack bipolar plates. Composite bipolar plates, though low cost and convenient in manufacturing, raise a major concern due to their high interfacial contact resistance caused by the mechanical treatment used to remove the polymer-rich layer on the surface. It is observed that most of this contact resistance is governed by electrical properties of the interface layer between the contacting surfaces. Measurements of contact resistance of mechanically polished composite bipolar plate/gas diffusion layer interface reveal a substantial influence of surface topography on the contact resistance, which varies significantly depending on the substrate surface treatment and roughness of composite bipolar plates.  相似文献   

13.
Experiments were conducted on two different cathode air cooled high temperature PEM (HTPEM) fuel cell stacks; a 30 cell 400 W prototype stack using two bipolar plates per cell, and a 65 cell 1 kW commercial stack using one bipolar plate per cell. The work seeks to examine the use of different heating strategies and find a strategy suited for fast start-up of the HTPEM fuel cell stacks. Fast start-up of these high temperature systems enables use in a wide range of applications, such as automotive and auxiliary power units, where immediate system response is needed. The development of a dynamic model to simulate the temperature development of a fuel cell stack during heating can be used for assistance in system and control design. The heating strategies analyzed and tested reduced the start-up time of one of the fuel cell stacks from 1 h to about 6 min.  相似文献   

14.
《Journal of power sources》2004,129(2):152-169
Stack and vehicle performance, design for manufacturing, and design for environment principles are used to develop bipolar plate design requirements and analyze design concepts for PEM fuel cells. Specifically, a list of 18 requirements identified in the literature is extended to 51 requirements and design rules. Given these design requirements, engineering characteristics or metrics used to indicate how well different bipolar plate designs meet each requirement and related targets and benchmarks are identified. Next, a subset of the engineering characteristics are used to evaluate six example bipolar plate designs made from graphite, stainless steel, and carbon composite in solid and integrated cooling configurations for a specific hybrid vehicle. For the case study of bipolar plates, correlations are interpreted for the considering relationships to compressive strength, the mass of the bipolar and cooling plates, the size of the stack required to move the ‘generic vehicle’, stack volume, disassembly efficiency, and select manufacturability metrics. Also, advantages and disadvantages specific to materials and design configurations are presented and discussed. Finally, power density and specific volume without consideration for vehicle performance was found not to be enough to assess the case study plates and, because of their common use in assessing fuel cell system design, is an important conclusion of this research.  相似文献   

15.
《Journal of power sources》1999,84(2):231-234
PEM fuel cells are viewed as one of the most environmentally friendly propulsion systems for automotive travel in the future. The PEM fuel cell is still too expensive for wide-spread commercialization. To achieve this cost target and at the same time meeting several technical requirements for mass production, a novel type of low-cost bipolar plates has been developed by SGL Technik GmbH. In this paper, test results of novel SGL bipolar plate materials concerning electrical conductivity (including material resistivity and contact resistances), corrosion, chemical compatibility, gas tightness and mechanical strength are presented. Based on the measurements of resistivity and cell performance, the investigated material appears to be a good choice for stable high performance PEMFC bipolar plates.  相似文献   

16.
《Journal of power sources》1996,62(2):167-174
The production of electricity in a fuel cell system is associated with the production of an equivalent amount of thermal energy, both for large size power plants and for transportation applications. The heat released by the cells must be removed by a cooling system, characterized by its small size and weight, which must be able to assure uniform work conditions and reduce performance losses. Based upon realistic assumptions, a mathematical model has been developed to determine the temperature and current density distribution in a solid polymer electrolyte fuel cell (SPEFC) stack as a function of operating conditions and stack geometry. The model represents a useful tool to identify operating conditions, such as to have an optimal longitudinal and axial temperature profile, so allowing the design of cooling system and bipolar plates. In this paper, the model has been applied to determine the temperature profile of an experimental SPEFC stack. The model is validated by comparing model results with experimental measurements; simulated and experimental results agree satisfactorily.  相似文献   

17.
Polymer electrolyte membrane (PEM) or proton-exchange membrane fuel cell systems are environmentally friendly power sources for many applications. Bipolar plates are essential components of a PEM fuel cell. Recently, composite bipolar plates have received considerable interest due to their superior performance. The most important properties of bipolar plates are electrical resistance and contact resistance, which are largely dependent on the surface morphology of the bipolar plate, because low electrical resistance improves the efficiency of PEM fuel cells. In this study, a selective surface preparation technology is developed using an electromagnetic field and carbon black (electromagnetic-carbon surface treatment). The carbon black is heated by an electromagnetic field on the surface of the bipolar plate with a high rate of temperature rise. The non-electrically conducting surface resin is removed, without damaging the carbon fibre to give a low electrical resistance. It is found that the surface-treated composite bipolar plate has a lower electrical resistance than those of conventional composite bipolar plates, and that the electromagnetic-carbon surface treatment can be applied for production of the composite bipolar plates in a fast and efficient process.  相似文献   

18.
Anticorrosion coating for stainless steel (SS) and titanium bipolar plates were evaluated to improve the corrosion resistance and electrical conductivity in PEMFC. The PEMFC offers clean and environmentally friendly usage in electrical power systems. The bipolar plates contribute 60%–80% of the total components of PEMFC stack with electrical conductivity >100 S cm?1. Therefore, high conductivity and corrosion resistance are observed for long-term operations in PEMFC. Recent works has developed the cost-effective and feasible alternative materials to replace graphite bipolar plates. Metallic materials, such as SS and titanium, possess good electrical conductivity but poor corrosion resistance. Coating of SS and titanium bipolar plates can improve the corrosion resistance of metallic bipolar plates. Excellent performance of bipolar plates was recorded by using NbC coating for stainless steel materials. The ICR value using plasma surface alloying method was 8.47 mΩ cm2 with a low current density (Icorr) between 0.051 and 0.058 μA cm?2. The criteria for both current densities (<1 μA cm?2) and electrical conductivity (<10 mΩ cm2) met the DOE's 2020 technical targets. In addition, conventional air brush method can be used for fabricating multilayer coatings onto substrates because it is self-cleaning, low cost and offers high volume and large area production. Vapor deposition method, a highly advanced coating technology using PVD, suitable for coating bipolar plates because it is environmentally friendly and can be used in high temperatures, producing materials with good impact strength and excellent abrasion resistance. PEMFC cost is still too high for large scale commercialization, which is the cost of raw material and processing to allow fabrication of thinner plates contributes substantially to the total PEMFC cost. Some future works on fuel cell anticorrosion research with reasonable coating method is suggested to reduce the cost in order to facilitate the move toward commercialization especially for SS and titanium bipolar plates.  相似文献   

19.
A new monolithic solid oxide fuel cell (SOFC) design stacked with flatten tubes of unit cells without using metallic interconnector plate is introduced and evaluated in this study. The anode support is manufactured in a flat tubular shape with fuel channel inside and air gas channel on the cathode surface. This design allows all-ceramic stack to provide flow channels and electrical connection between unit cells without needing metal plates. This structure not only greatly reduces the production cost of SOFC stack, but also fundamentally avoids chromium poisoning originated from a metal plate, thereby improving stack stability. The fuel channel was created in the extrusion process by using the outlet shape of mold. The air channel was created by grinding the surface of pre-sintered support. The anode functional layer and electrolyte were dip-coated on the support. The cathode layer and ceramic interconnector were then spray coated. The maximum power density and total resistance of unit cell with an active area of 30 cm2 at 800 °C were 498 mW/cm2 and 0.67 Ωcm2, respectively. A 5-cell stack was assembled with ceramic components only without metal plates. Its maximum power output at 750 °C was 46 W with degradation rate of 0.69%/kh during severe operation condition for more than 1000 h, proving that such all-ceramic stack is a strong candidate as novel SOFC stack design.  相似文献   

20.
When a fuel cell (FC) utilizes liquid fuels directly, a few complications arise due to the conductance or the potential conductance of the fuel. Fuel cell stacks are typically designed in a bipolar fashion so that the voltage of individual cells can be added up in series to give an adequate and convenient output voltage. The conductivity of fuels brings about two risks if the bipolar stack is not properly designed and engineered. On one hand, the conductive liquid fuel may short circuit the neighboring cells of a bipolar FC stack with traditional integrated fuel manifolds. On the other hand, the conductive fuel may pass a high voltage to some parts of the cell through an ordinary manifold, causing excessive corrosion. These issues need to be addressed through a cell-isolation fuel distribution network (FDN). The function of such an FDN is to increase the shunting resistance of neighboring cells, so as to maintain a reasonable open circuit voltage. Also, the presence of a gas phase in the liquid fuel during cell operation affects fuel circulation and therefore needs to be considered in the FDN design. On the plus side, a liquid fuel, in contact with high surface area FC electrodes, functions as a super-capacitor, giving the FC an excellent pulse overload capacity. Also the fuel itself is a fair coolant, enabling high power density at minimal increase in stack weight. These considerations are applied to a kilowatt NaBH4/H2O2 fuel cell stack to generate the desired operational characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号