首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
High nitrogen-bearing stainless steels, AISI Type 201 and AL219, were investigated in simulated polymer electrolyte membrane fuel cell (PEMFC) environments to assess the use of these materials in fuel cell bipolar plate applications. Both steels exhibit better corrosion behavior than 316L steel in the same environments. Type 201 steel shows similar but lower interfacial contact resistance (ICR) than 316L, while AL219 steel shows higher ICR than 316L.

X-ray photoelectron spectroscopy (XPS) analysis shows that the air-formed films on Type 201 and AL219 are composed of iron oxides, chromium oxide, and manganese oxide. Iron oxides dominate the composition of the air-formed film, specially the outer layer. Chromium oxide dominates passive films. Surface film thicknesses were estimated. The results suggest that high nitrogen-bearing stainless steels are promising materials for PEMFC bipolar plates.  相似文献   


2.
Nitridation of Cr-bearing alloys can yield low interfacial contact resistance (ICR), electrically conductive and corrosion-resistant CrN or Cr2N base surfaces of interest for a range of electrochemical devices, including fuel cells, batteries, and sensors. This paper presents results of exploratory studies of the nitridation of commercially available, high Cr (30–35 wt%) Ni–Cr alloys and a ferritic high Cr (29 wt%) stainless steel for proton exchange membrane fuel cell (PEMFC) bipolar plates. A high degree of corrosion resistance in sulfuric acid solutions designed to simulate bipolar plate conditions and low ICR values were achieved. Oxygen impurities in the nitriding environment were observed to play a significant role in the nitrided surface structures that formed, with detrimental effects for the Ni–Cr base alloys, but beneficial effects for the stainless steel alloy. Positive results from single-cell fuel cell testing are also presented.  相似文献   

3.
《Journal of power sources》2006,160(1):353-358
The performances of the proton exchange membrane fuel cell (PEMFC), direct formic acid fuel cell (DFAFC) and direct methanol fuel cell (DMFC) with sulfonated poly(ether sulfone) membrane are reported. Pt/C was coated on the membrane directly to fabricate a MEA for PEMFC operation. A single cell test was carried out using H2/air as the fuel and oxidant. A current density of 730 mA cm−2 at 0.60 V was obtained at 70 °C. Pt–Ru (anode) and Pt (cathode) were coated on the membrane for DMFC operations. It produced 83 mW cm−2 maximum power density. The sulfonated poly(ether sulfone) membrane was also used for DFAFC operation under several different conditions. It showed good cell performances for several different kinds of polymer electrolyte fuel cell applications.  相似文献   

4.
Stainless steel is quite attractive as bipolar plate material for polymer electrolyte fuel cells (PEFCs). Passive film on stainless steel protects the bulk of it from corrosion. However, passive film is composed of mixed metal oxides and causes a decrease in the interfacial contact resistance (ICR) between the bipolar plate and gas diffusion layer. Low ICR and high corrosion resistance are both required. In order to impart low ICR to stainless steel (SUS304), carbon-coating was prepared by using plasma-assisted chemical vapor deposition. Carbon-coated SUS304 was characterized by Raman spectroscopy and atomic force microscopy. Anodic polarization behavior under PEFC operating conditions (H2SO4 solution bubbled with H2 (anode)/O2 (cathode) containing 2 ppm HF at 80 °C) was examined. Based on the results of the ICR evaluated before and after anodic polarization, the potential for using carbon-coated SUS304 as bipolar plate material for PEFC was discussed.  相似文献   

5.
《Journal of power sources》2005,144(1):113-121
A design for an air-breathing and passive polymer electrolyte fuel cell is presented. Such a type of fuel cell is in general promising for portable electronics. In the present design, the anode current collector is made of a thin copper foil. The foil is provided with an adhesive and conductive coating, which firstly tightens the hydrogen compartment without mask or clamping pressure, and secondly secures a good electronic contact between the anode backing and the current collector. The cathode comprises a backing, a gold-plated stainless steel mesh and a current collector cut out from a printed circuit board. Three geometries for the cathode current collector were evaluated. Single cells with an active area of 2 cm2 yielded a peak power of 250–300 mW cm−2 with air and pure H2 in a complete passive mode except for the controlled flow of H2. The cells’ response was investigated in steady state and transient modes.  相似文献   

6.
Ferrite stainless steels (AISI441, AISI444, and AISI446) were successfully coated with 0.6 μm thick SnO2:F by low-pressure chemical vapor deposition and investigated in simulated PEMFC environments. The results showed that a SnO2:F coating enhanced the corrosion resistance of the alloys in PEMFC environments, though the substrate steel has a significant influence on the behavior of the coating. ICP results from the testing solutions indicated that fresh AISI441 had the highest dissolution rates in both environments, and coating with SnO2:F significantly reduced the dissolution. Coating AISI444 also improved the corrosion resistance. Coating AISI446 steel further improved the already excellent corrosion resistance of this alloy. For coated steels, both potentiostatic polarizations and ICP results showed that the PEMFC cathode environment is much more corrosive than the anode one. More dissolved metallic ions were detected in solutions for PEMFC cathode environment than those in PEMFC anode environment. Sn2+ was detected for the coated AISI441 and AISI444 steels but not for coated AISI446, indicating that the corrosion resistance of the substrate has a significant influence on the dissolution of the coating. After coating, the ICR values of the coated steels increased compared to those of the fresh steels. The SnO2:F coating seems add an additional resistance to the native air-formed film on these stainless steels.  相似文献   

7.
Stainless steel bipolar plates for the polymer electrolyte membrane (PEM) fuel cell offer many advantages over conventional machined graphite. Austenitic stainless steel 316L is a traditional candidate for metal bipolar plates. However, the interfacial ohmic loss across the metallic bipolar plate and membrane electrode assembly due to corrosion increases the overall power output of PEMFC. Plasma nitriding was applied to improve the surface performance of 316L bipolar plates. A dense γNγN phase layer was formed on the surface. Polarization curves in the solution simulating PEMFC environment and interfacial contact resistance were measured. The results show that the corrosion resistance is improved and the interfacial contact resistance (ICR) is decreased after plasma nitriding. In comparison with the untreated 316L, the ICR between the carbon paper and passive film for the plasma-nitrided 316L decreases at the same condition and lowers with increasing pH value.  相似文献   

8.
Austenite stainless steels (316L, 317L, and 349™) have been coated with 0.6 μm thick SnO2:F by low-pressure chemical vapor deposition and investigated in simulated polymer electrolyte membrane fuel cell (PEMFC) environments. The results showed that substrate steel has a significant influence on the behavior of the coating. Coated 316L showed a steadily increasing anodic current in PEMFC environments, indicating that it is not suitable for this alloy/coating combination. Coated 349™ showed a cathodic current in the PEMFC anode environment, demonstrating its stability in the PEMFC cathode environment. Coated 317L exhibited a stable anodic current after a current peak (at ca. 14 min) in the PEMFC anode environment, and showed an extremely stable low current in PEMFC cathode environment, suggesting the possibility of using SnO2:F coated 317L for PEMFC bipolar plate applications.  相似文献   

9.
The bipolar plate is an important component of the polymer electrolyte membrane fuel cell (PEMFC) because it supplies the pathway of the electron flow between each unit cell. The ferritic stainless steel is considered a good candidate material for bipolar plate, but it is limited to use as a bipolar plate due to its corrosion problem and high interfacial contact resistance (ICR). To explore a cost-effective method of surface modification, various chemical and heat treatments are performed with 446M ferritic stainless steel to understand the effect of the surface modifications on the ICR and the corrosion resistance. The ICR and corrosion resistance of 446M stainless steel can be effectively controlled by a proper surface modification with combined treatment of immersion in the acidic solution, followed by heat treatment. The combined chemical and heat treatment not only improves the corrosion resistance but also reduces the ICR value.  相似文献   

10.
《Journal of power sources》2006,162(2):1036-1042
To protect the ceria electrolyte from reduction at the anode side, a thin film of yttria-stabilized zirconia (YSZ) is introduced as an electronic blocking layer to anode-supported gadolinia-doped ceria (GDC) electrolyte solid oxide fuel cells (SOFCs). Thin films of YSZ/GDC bilayer electrolyte are deposited onto anode substrates using a simple and cost-effective wet ceramic co-sintering process. A single cell, consisting of a YSZ (∼3 μm)/GDC (∼7 μm) bilayer electrolyte, a La0.8Sr0.2Co0.2Fe0.8O3–GDC composite cathode and a Ni–YSZ cermet anode is tested in humidified hydrogen and air. The cell exhibited an open-circuit voltage (OCV) of 1.05 V at 800 °C, compared with 0.59 V for a single cell with a 10-μm GDC film but without a YSZ film. This indicates that the electronic conduction through the GDC electrolyte is successfully blocked by the deposited YSZ film. In spite of the desirable OCVs, the present YSZ/GDC bilayer electrolyte cell achieved a relatively low peak power density of 678 mW cm−2 at 800 °C. This is attributed to severe mass transport limitations in the thick and low-porosity anode substrate at high current densities.  相似文献   

11.
《Journal of power sources》2005,145(2):477-484
We propose a new direct methanol fuel cell with a zigzag-folded membrane electrode assembly. This fuel cell is formed by a membrane, which is made up of anode and cathode electrodes on a zigzag-folded sheet, separated by insulation film and current collectors. Individual anodes, cathodes and membranes form a unit cell, which is connected to the adjacent unit cell. The fuel cell can achieve high output voltage through easy in-series connection. Since it is not necessary to connect electrodes, as in the manner of conventional bipolar plates, there is no increase in fabrication cost and no degradation in reliability. The fuel feeds for the anode and cathode are achieved through methanol and air feeds on each electrode, which do not require electricity to run a pump or blower. The experimental cells were formed with an active area of 16 cm × 2 cm on membrane-folded cells. Filter papers with slits were inserted between anodes to improve their methanol supply. A power density of 3 mW cm−2 was obtained at a methanol concentration of 2 M at ambient temperature. The cell power was affected by the slit area on cathode.  相似文献   

12.
The overall water vapor balance and concentration distribution in the flow channels is a critical phenomenon affecting polymer electrolyte fuel cell (PEFC) performance. This paper presents, for the first time, results of a technique to measure in situ water vapor, nitrogen and oxygen distribution within the gas channels of an operating PEFC. The use of a gas chromatograph (GC) to measure high levels of water saturation directly, without dehumidification of the flow stream, is a unique aspect of this work. Following careful calibration and instrumentation, a gas chromatograph (GC) was interfaced directly to the fuel cell at various locations along the serpentine anode and cathode flow paths of a specially designed fuel cell. The 50 cm2 active area fuel cell also permits simultaneous current distribution measurements via the segmented collector plate approach. The on-line GC method allows discrete measurements of the water vapor content up to a fully saturated condition about every 2 minutes. Water vapor and other species distribution data are shown for several inlet relative humidities on the anode and cathode for different cell voltages. For the thin electrolyte membranes used (51 μm), there is little functional dependence of the anode gas channel water distribution on current output. For thin membranes, this indicates that there is little gradient in the water activity between anode and cathode, indicating diffusion can offset electro-osmotic drag under these circumstances (i<0.5 A/cm2). This technique can be used for detailed studies on water distribution and transport in the PEFC.  相似文献   

13.
《Journal of power sources》2005,144(1):141-145
A micro direct methanol fuel cell (μDMFC) with active area of 1.625 cm2 has been developed for high power portable applications and its electrochemical characterization carried out in this study. The fragility of the silicon wafer makes it difficult to compress the cell for good sealing and hence to reduce contact resistance in the Si-based μDMFC. We have instead used very thin stainless steel plates as bipolar plates with the flow field machined by photochemical etching technology. For both anode and cathode flow fields, widths of both the channel and rib were 750 μm, with a channel depth of 500 μm. A gold layer was deposited on the stainless steel plate to prevent corrosion. This study used an advanced MEA developed in-house featuring a modified anode backing structure with a compact microporous layer. Maximum power density of the micro DMFC reached 62.5 mW cm−2 at 40 °C, and 100 mW cm−2 at 60 °C at atmospheric pressure, which almost doubled the performance of our previous Si-based μDMFC.  相似文献   

14.
《Journal of power sources》2006,159(2):1158-1161
A simple and cost-effective technique, filter-coating, has been developed to fabricate dense electrolyte membranes. Eight mole percent yttria-stabilized zirconia (YSZ) electrolyte membrane as thin as 7 μm was prepared by filter-coating on a porous substrate. The thickness of the YSZ film was uniform, and could be readily controlled by the concentration of the YSZ suspension and the rate of the suspension deposition. The YSZ electrolyte film was dense and was well bonded to the Ni-YSZ anode substrate. An anode-supported solid oxide fuel cell (SOFC) with a YSZ electrolyte film and a La0.85Sr0.15MnO3 (LSM) + YSZ cathode was fabricated and its performance was evaluated between 700 and 850 °C with humidified hydrogen as the fuel and ambient air as the oxidant. An open circuit voltage (OCV) of 1.09 V was observed at 800 °C, which was close to the theoretical value, and the maximum power density measured was 1050 mW cm−2. The results demonstrate that the dense YSZ film fabricated by filter-coating is suitable for application to SOFCs.  相似文献   

15.
Polymer electrolyte membrane fuel cell (PEMFC) stacks suffer from the high cost and low volumetric energy of non-porous graphite bipolar plates. To resolve this problem, a bilayer coating consisting of Ni and Ni–Cr–P is deposited on AISI 1020 low-carbon steel using pulse electrodeposition. Ni/Ni–Cr–P-coated AISI 1020 is evaluated as a bipolar plate material for PEMFCs. Ni/Ni–Cr–P-coated substrates exhibit better corrosion resistance in both cathodic (air-purging) and anodic (H2-purging) environment than the bare AISI 1020 substrate and lower interfacial contact resistance (ICR) than bare AISI 1020 and stainless steel. Further, it is expected to show better water management as the Ni/Ni–Cr–P coating is more hydrophobic than the bare substrate. Preliminary studies show that Ni/Ni–Cr–P-coated AISI 1020 plate can be a suitable candidate for replacing graphite as the bipolar plate of PEMFCs.  相似文献   

16.
Chromium electroplated AISI 316L stainless steel was nitrided using inductively coupled plasma (ICP) for application in the bipolar plate of a polymer electrolyte membrane fuel cell (PEMFC). A continuous and thin chromium nitride layer was formed at the surface of the samples after ICP nitriding for 2 h at 400 °C. The interfacial contact resistance (ICR) and corrosion resistance in simulated PEMFC operating conditions were higher than the required values, while they varied with the applied dc bias voltage during the nitriding process. The ICR value decreased with an increase in bias voltage. Potentiodynamic polarization measurements showed that all of the nitrided samples had excellent corrosion resistance with a current density of ∼10−7 A cm−2 at the cathode. It was also found that the oxygen content at the surface was not increased after the corrosion test. X-ray diffractometry (XRD), field emission scanning electron microscopy (FE-SEM), and Auger electron spectroscopy (AES) were used to analyze the effect of plasma nitriding.  相似文献   

17.
《Journal of power sources》2001,96(1):233-235
The use of metal based bipolar plates in polymer electrolyte membrane (PEM) fuel cells, with an active coating on titanium to reduce voltage losses due to the formation of passive layers has been demonstrated. Lifetime data in excess of 8000 h has been achieved and power densities in excess of 1.8 kW dm−3 and 1 kW kg−1 are predicted.  相似文献   

18.
《Journal of power sources》2006,154(1):298-307
Chemically synthesized polyaniline doped with perchlorate ion was used as the electroactive material of the cathode in the construction of bipolar rechargeable batteries based on carbon doped polyethylene (CDPE) as a conductive substrate of the bipolar electrodes. A significant improvement in the originally poor adherence between the polymer foil and electroactive material layer of the anode was achieved by chemical pretreatment (etching) and single-sided metallization of the polymer foil with copper. A thin layer of optalloy was electroplated onto the surface of the copper-coated polymer foil to increase the battery overvoltage. A mixture of 1 wt% electrochemically synthesized optalloy, 92 wt% electrochemically synthesized zinc powder, 2 wt% MgO, 4 wt% ZnO and 1 wt% sodium carboxymethyl cellulose (CMC) was used as the anode mixture. Then, the electroactive mixture of the anode was coated onto the metallized surface of the CDPE. Graphite powder was used to coat the other side of the CDPE at 90 °C at 1 t cm−2 pressure This side was coated with a cathode mixture containing 80 wt% polyaniline powder, 18 wt% graphite powder and 2 wt% acetylene black. The battery electrolyte contained 1 M Zn(ClO4)2 and 0.5 M NH4ClO4 and 1.0 × 10−4 M Triton X-100 at pH 3.2. Both 3.2 V dry and wet bipolar batteries were constructed using a bipolar electrode and tested successfully during 200 charge–discharge cycles. The battery possessed a high capacitance of 130 mAh g−1 and close to 100% columbic efficiency. The loss of capacity during charge–discharge cycles for the wet bipolar battery was less than that for the dry bipolar battery. Self-discharge of the dry and wet batteries during a storage time of 30 days was about 0.64% and 0.45% per day, respectively. An artificial neural network (ANN) was used to model the voltage and battery available capacity (BAC) only for the dry bipolar battery at different currents and different times of discharge.  相似文献   

19.
Carbon film-coated stainless steel (CFCSS) has been evaluated as a low-cost and small-volume substitute for graphite bipolar plate in polymer electrolyte membrane fuel cell (PEMFC). In the present work, AISI 304 stainless steel (304SS) plate was coated with nickel layer to catalyze carbon deposits at 680°C under C2H2/H2 mixed gas atmosphere. Surface morphologies of carbon deposits exhibited strong dependence on the concentration of carbonaceous gas and a continuous carbon film with compact structure was obtained at 680 °C under C2H2/H2 mixed gas ratio of 0.45. Systematic analyses indicated that the carbon film was composed of a highly ordered graphite layer and a surface layer with disarranged graphite structure. Both corrosion endurance tests and PEMFC operations showed that the carbon film revealed excellent chemical stability similar to high-purity graphite plate, which successfully protected 304SS substrate against the corrosive environment in PEMFC. We therefore predict CFCSS plates may practically replace commercial graphite plates in the application of PEMFC.  相似文献   

20.
《Journal of power sources》2006,159(2):1078-1083
Aluminate cement/graphite conductive composite bipolar plates were prepared by mould pressing at room temperature. The effects of the graphite content, the mould pressing pressure and mould pressing time on the electrical conductivity and the flexural strength of composite are discussed. The electrical conductivity and the flexural strength of the composite bipolar plates with 60 wt.% graphite content, prepared with a mould pressing pressure of 5 MPa for 10 min, is >100 S cm−1 and 20 MPa, respectively and can be improved by optimizing the mould pressing conditions, especially mould pressing time. The water content of the composite bipolar plate with different graphite contents was also investigated. The water content of the composite bipolar plate is about 6 wt.% with a graphite content of 60 wt.%. This composite bipolar plate contains capillary pores and has hydrophilicity, which is different from other composite bipolar plates. Therefore, it possesses an inner humidifying function and can use the water produced at the cathode for humidifying the proton exchange membrane during the operation of a PEMFC. In addition, the H2 permeability of the composite bipolar plate is low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号