共查询到20条相似文献,搜索用时 15 毫秒
1.
Dong Xu Liyi Shi Zhenhong Wu Qingdong Zhong Xinxin Wu 《Journal of the European Ceramic Society》2009,29(9):1789-1794
The effect of sintering processes, such as open sintering, sintering inside a closed crucible, and sintering within a powder bed, on the microstructure and V–I characteristics of ZnO–Bi2O3-based varistor ceramics was investigated at sintering temperatures in the range 1000–1200 °C. The results from the experiments showed that the microstructure and electrical properties of the samples varied according to the sintering method and temperature. Optimal values for the electrical characteristics of the varistor ceramics by different sintering processes were obtained when the sintering was conducted at 1100 °C. At the same sintering temperature, the different processes affected the properties differently. At 1000 °C, the samples sintered within a powdered bed showed better electrical properties than those subjected to the other two processes, while at 1100 or 1200 °C, the samples sintered in an open crucible exhibited the best electrical properties. 相似文献
2.
In this work, the ZnO–Bi2O3–Cr2O3–Co2O3–MnO2 varistors doped with different content of Sb2O3 were prepared by two-step solid-state reaction route, including a pre-calcining of the mixtures of nanosized ZnO and the other additives at an optimized temperature, followed by a consequent sintering process at different temperatures. Meanwhile, the effects of Sb2O3 on the sintering temperature, microstructure and electrical properties of the objective varistors were investigated. It was found the densification temperature went up in a proper range and the content of pyrochlore phase, spinel phase and β-Bi2O3 phase increased with the increasing content of Sb2O3, while the grain size of ZnO–Bi2O3-based varistor reduced. The results demonstrated that at the same sintering temperature, the second particles increased with the increasing amount of Sb2O3, which was helpful to control the grain growth, leading to a higher breakdown voltage. However, the decrease of α-Bi2O3 phase (melting point of α-Bi2O3 phase is 825 °C), which is the main component of the liquid Bi2O3 phase in the sample during sintering process, leads to the increase of the sintering temperature of the green pallet. As a result, the ZnO varistor doped with 3.0 mol% Sb2O3 sintered at 1000 °C exhibited the highest breakdown voltage of 1863.3 V/mm. By contrast, the ZnO varistor without Sb2O3 doping sintered at 900 °C had the optimum nonlinear coefficient of 59.8. 相似文献
3.
《Ceramics International》2016,42(13):14350-14354
ZnO–Bi2O3–MnO2 (ZBM)-based varistors were fabricated via doping a novel synthetic multi-phase (SMP) additive produced by calcining the mixture of 18Bi2O3·Cr2O3 at a given temperature. The effects of the SMP on the microstructural and electrical properties of ZBM varistors were investigated. It was found that the SMP dopant was a compound crystalline phases including Bi–Cr–O phases (Bi7.38Cr0.62O12+x and CrBi18O30) and small amounts of Bi2O3 rather than a synthesized polycrystal. The Bi–Cr–O phases were not emerged for samples with x=1, indicating that the amount of it is tiny and the small Bi2O3 may accelerate ZnO grain growth. With more SMP doping (x>1) in the ZBM ceramics, it acted as a barrier inhibiting grain growth. For samples with x=5, excellent electrical properties were obtained: the nonlinear coefficient α increased up to 50.19 corresponding to the highly barrier height of 2.62 eV; the leakage current IL reduced to 0.3 μA. The dielectric constant εa is proportional to the ratio of the grain size d to the thickness of the depletion layer width t, which explained the εa increased at f=1 kHz for the samples with x=1 and 5. The improvement of the electrical properties can be explained by the oxygen absorption mechanism. 相似文献
4.
《Ceramics International》2016,42(9):10547-10550
ZnO–Bi2O3–Sb2O3–Co2O3–MnO2–xCr2O3 (ZBSCM–xCr2O3, 0≤x≤0.6 mol%) varistors were fabricated through the conventional solid state method, and the effects of Cr2O3 on the microstructures and electrical properties were investigated. Results showed that the secondary phases CrBi18O30 and Co2Cr0.5Sb0.5O4 emerged when x ranges from 0.2 to 0.4. In these compositions, Cr2O3 acted as a donor and decreased the electrical properties of ZBSCM. For samples with x=0.5, the secondary phases transformed to MnCr2O4 and the electrical properties increased significantly: the nonlinear coefficient α sharply increased up to 80.71 and the barrier height ϕb reached 3.88 eV. This indicates that the donor effect of Cr2O3 disappeared. In addition, with the increase of Cr2O3, the average grain size of ZnO decreased from 7.48 μm to 5.46 μm, which in turn resulted in an increase of breakdown voltage E1mA from 216.17 V/mm to 362.50 V/mm. Besides, all the samples showed the low value of leakage current of lower than 0.1 μA. This varistor might be a promising candidate for highly effective applications. 相似文献
5.
C.-W. Nahm 《Ceramics International》2009,35(2):541-546
The microstructure and electrical properties of ternary system ZnO–0.5 mol% V2O5–MnO2 ceramics sintered were investigated in accordance with MnO2 content by sintering at 900 °C. For all samples, the microstructure of the ternary system ZnO–V2O5–MnO2 ceramics consisted of mainly ZnO grain and secondary phase Zn3(VO4)2. The incorporation of MnO2 to the binary system ZnO–V2O5 ceramics was found to restrict the abnormal grain growth of ZnO. The breakdown field in the E–J characteristics increased from 175 to 992 V/cm with the increase of MnO2 content. The incorporation of MnO2 improved non-ohmic properties by increasing non-ohmic coefficient. The highest non-ohmic coefficient (27.2) in the ternary system ZnO–0.5 mol% V2O5–MnO2 was obtained for MnO2 content of 2.0 mol%. 相似文献
6.
《Ceramics International》2016,42(8):9686-9696
The influence of the MnO content on the microstructure and the electrical response of liquid-phase sintered ZnO–V2O5 varistor ceramics wereanalysed using A.C. impedance spectroscopy on samples prepared via the conventional solid state route.The impedance spectra were analysed with the help of one model equivalent circuit at high frequencies and another at low frequencies, involving both resistor and non-Debye constant phase elements (CPEs). The results indicate a significant contribution of grain boundary resistance to the total resistance and non-ohmic characteristic of the studied materials. The Arrhenius plots show two slopes with a turnover at 150 °C/200 °C for both the higher- and lower-frequency time constants. These behaviours can be related to the decrease of the minor charge carrier density. These activation energies were associated with the adsorption and reaction of O2 (as well as V) species at the grain boundary interface. Consequently, better varistor performance is achieved for 96.9 mol% ZnO+0.5 mol% V2O5+0.10 mol% Nb2O5+2.5 mol% MnCO3 with nonlinear coefficient α=21.6, breakdown field E1mA=191.47 V/mm, leakage current density JL=36.46 µA/cm2 and activation energies of 0.639 eV and 0.644 eV. X-ray diffraction shows that in addition to the major ZnO phases, Zn3(VO4)2 and ZnV2O4, were detected as minor secondary phases. SEM analysis of the morphology shows that the grain growth increases with increases in the MnO doping level. 相似文献
7.
《Ceramics International》2022,48(10):13855-13861
La2O3 doped ZnO–MgO–TiO2 based linear resistance ceramics were prepared by the solid phase sintering method. The doping content of La2O3 is from 0.0 wt% to 2.5 wt%. The solubility of La2O3 in ZnO is less than 0.06 mol% (0.5 wt%), La0.66TiO2.993 phases will be formed at grain boundary and change the distribution of spinel phase when La2O3 is excessive. For I–V test, undoped sample exhibits typical non-ohmic characteristics, but La-doped samples show excellent ohmic behaviors under low DC and high pulse current (PC). The complex impedance spectrum and the frequency dependent conductivity furtherly demonstrate that La-doped samples possess linear characteristics because there is no grain boundary effect which can affect the electron transmission at grain boundaries. Besides, the decrease of the grain boundary barrier from 0.2135eV for undoped sample to 0.0031eV for 0.5 wt% La doped samples can account for the elimination or reduction of grain boundary effect. In this work, the transition from non-ohmic to ohmic properties by doping La2O3 in ZnO–MgO–TiO2 multiphase ceramics is realized. 相似文献
8.
《Journal of the European Ceramic Society》2020,40(2):355-361
We investigated the effect of pentavalent donor dopant Ta2O5 on microstructure development, electric and dielectric characteristics of SnO2–CoO based ceramics. Already low additions of Ta2O5 (0.05 mol%) effectively reduce the porosity, improve densification and dielectric permittivity and trigger a 3–fold increase in SnO2 growth rate. Rietveld analysis shows that the amount of Co2SnO4 spinel phase drops with the addition of Ta2O5 due to incorporation of Co2+ and Ta5+ into SnO2 structure. With higher additions, however, Ta2O5 segregates to the grain boundaries and hinders SnO2 grain growth, which in turn improves electrical properties. TEM/EDS analysis shows that above 0.5 mol% of Ta2O5 the Co:Ta ratio in SnO2 grains is constant 1:2, which means that a twice lower amount of Ta5+ is incorporated in the SnO2 structure compared to the Nb2O5-doped SnO2–CoO system. Accordingly, the following charge compensation mechanism is proposed: 3 Sn(IV)S˟n (IV) ⇋ Co(II)Sn ̎(IV) + 2 Ta(V)˙Sn (IV). 相似文献
9.
《Journal of the European Ceramic Society》2004,24(14):3635-3641
A peculiar kind of ZnO–B2O3–PbO–V2O5–MnO2 ceramics was produced from the ZnO nanopowders directly co-doped with the oxides instead of lead zinc borate frit in this investigation. The 8 wt.% (PbO+B2O3) co-doped ceramics sintered at 950 °C for 2 h displayed the optimum electrical properties, that is, leakage current density JL=6.2×10−6 A/cm2, nonlinear coefficient α=22.8 and breakdown voltage VBK=331 V/mm. The co-doping of 8 wt.% (PbO+B2O3) resulted in an increase in nonlinear coefficient and a decrease in leakage current density of the ZnO–V2O5 varistors while the sintering temperature showed no evident influence on nonlinear coefficient and leakage current density at the range of 800–950 °C. 相似文献
10.
《Ceramics International》2022,48(1):266-277
Pure ZnO and ZnO–Bi2O3 nanocomposites with 5 wt% and 10 wt% of Bi2O3 content were synthesized using the co-precipitation method. Optical properties such as refractive index (n), extinction coefficient (k), bandgap (Eg), and Urbach energies, as well as the band structure, were determined by modeling the experimental transmittance and reflectance UV–Vis spectra. The deduced bandgap and Urbach energies for pure ZnO (3.758 eV) increase with the increase of the doping degree of Bi2O3 in ZnO–Bi2O3 nanocomposite films. X-ray diffraction and scanning electron microscopy (SEM) was used to study the structural and morphological properties of these nanocomposite films. Pure ZnO and nanocomposites with Bi2O3 exhibit crystalline domains with wurtzite hexagonal structures, and as the doping degree of Bi2O3 increases, the crystallite size decreases. Based on SEM micrographs, the ZnO nanoparticles (NPs) structure shows the presence of aggregation. Moreover, Bi2O3 NPs in the nanocomposite film led to the further aggregation in the form of large rods. The elemental and chemical properties of the nanocomposites were investigated using infrared and energy-dispersive X-ray spectroscopy. The charge transfer process in the studied system is between ZnO and Bi2O3 conduction bands. Density-functional theory (DFT) calculations were performed for ZnO, Bi2O3, and ZnO-Bi2O3 compounds to investigate structural, optical, and electronic properties, being in agreement with the experimental results. 相似文献
11.
12.
《Ceramics International》2016,42(4):4739-4747
The influence of doping with Ge on the nonlinear coefficient α and the breakdown electric field EB of TiO2–Ta2O5–CaCO3 varistor ceramics was investigated. In this study, TiO2–Ta2O5–CaCO3 varistor ceramics added with Ge was successfully prepared using the traditional method of ball milling–molding–sintering. The electrical performance, including the nonlinear coefficient α, the breakdown electric field EB, and the leakage current JL, are tested using a varistor direct current parameter instrument. The average barrier height ΦB of each sample is calculated using the relevant formula. X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, and scanning transmission electronic microscopy analyses demonstrated that Ge doping notably changed the microstructure of TiO2–Ta2O5–CaCO3 ceramics, thereby increasing α and decreasing EB. When the doping contents of Ta2O5 and CaCO3 were 0.2 and 0.4 mol%, respectively, the optimum doping content of 0.9 mol% Ge exhibited high α (10.2), low EB (14.1 V mm−1), and high ΦB (0.95 eV). These results are superior to previous findings. In addition, Ge as sintering aid reduced the sintering temperature caused by the low melting point. The optimal sintering temperature was 1300 °C for the TiO2–Ta2O5–CaCO3 ceramics doped with Ge. 相似文献
13.
AbstractVariation in the viscous flow behaviour, nature and extent of glass fluidity in glass/filler composites are addressed with respect to various factors such as filler type, content, size, density and migration distance. The characterisation of a glass (Bi2O3–B2O3–ZnO) composite consisting of two different fillers (cordierite and willemite) was determined using hot stage microscopy, a differential scanning calorimeter and a flow button test. The microstructure was analysed using a scanning electron microscope. The apparent viscosity of the glass composites increased on increasing concentration and density of the filler. The variation in the viscosity is due to the diffusion of the glass matrix through channels in the cordierite filler of the composite. Based on the calculated migration distance of the filler in the glass matrix, the present work suggests that the interfacial behaviour and the density of the filler play a significant role in determining the viscous flow of the glass composites. 相似文献
14.
This paper focuses on that the erbium-added ZnO–V2O5-based ceramics are attained at a sintering temperature as low as 875 °C. The effect of Er2O3 addition on microstructure, electrical properties, and dielectric characteristics has been investigated. Increasing the amount of Er2O3 slightly increased the densities of sintered pellets in the range of 5.52–5.59 g/cm3. The increase in the amount of Er2O3 increased the breakdown field from 6991 to 7408 V/cm up to 0.1 mol%, whereas a further addition decreased it. The sample added with 0.1 mol% Er2O3 exhibited the highest nonlinear coefficient (α=55) and the sample added with 0.25 mol% Er2O3 exhibited the lowest nonlinear coefficient (α=14). The donor concentration increased from 2.92×1017 to 8.48×1017 cm−3 with an increase in the amount of Er2O3. 相似文献
15.
The (Mg0.93Ca0.05Zn0.02)(Ti1?xZrx)O3 ceramics were prepared by conventional solid-state route. The dielectric properties and structure of (Mg0.93Ca0.05Zn0.02)(Ti1?xZrx)O3 ceramics were investigated. It has been found that MgTiO3 and CaTiO3 are the main phases and a second phase CaZrTi2O7 appeared in 95MCT ceramics co-doped with Zn–Zr. With Zn–Zr additive, the sintering temperature of 95MCT ceramics can be reduced to 1300 °C, and adjust the temperature coefficient of dielectric constant. With the increasing of Zr content, dielectric constant ?r decrease from 22.6 to 19.91 and the temperature coefficient of dielectric constant αc from 5.93 to 2.52 ppm/°C when x = 0.01, 0.02, 0.03 and 0.04 mol respectively. The 95MCT ceramics with x = 0.02 has a dielectric constant ?r of 22.02, a dielectric loss of 2.78 × 10?4 and a temperature coefficient of dielectric constant αc value of 2.98 ppm/°C. 相似文献
16.
Li-Xiang Wu Lin-Lin Zhu Yang You Rui-Lin Lin Qing-Qing Liu Wei-Ming Guo Hua-Tay Lin Kevin Paul Plucknett 《Ceramics International》2021,47(1):935-942
Dense pressure-sintered reaction-bonded Si3N4 (PSRBSN) ceramics were obtained by a hot-press sintering method. Precursor Si powders were prepared with Eu2O3–MgO–Y2O3 sintering additive. The addition of Eu2O3–MgO–Y2O3 was shown to promote full nitridation of the Si powder. The nitrided Si3N4 particles had an equiaxial morphology, without whisker formation, after the Si powders doped with Eu2O3–MgO–Y2O3 were nitrided at 1400 °C for 2 h. After hot pressing, the relative density, Vickers hardness, flexural strength, and fracture toughness of the PSRBSN ceramics, with 5 wt% Eu2O3 doping, were 98.3 ± 0.2%, 17.8 ± 0.8 GPa, 697.0 ± 67.0 MPa, and 7.3 ± 0.3 MPa m1/2, respectively. The thermal conductivity was 73.6 ± 0.2 W m?1 K?1, significantly higher than the counterpart without Eu2O3 doping, or with ZrO2 doping by conventional methods. 相似文献
17.
《Ceramics International》2017,43(4):3465-3474
This study investigated the effect of elemental crystal Ge or/and GeO2 doping on the microstructure and varistor properties of TiO2–Ta2O5–CaCO3 varistor ceramics, which were prepared via the traditional ball milling–molding–sintering process. X-ray diffraction, scanning electron microscopy, scanning transmission electron microscopy-energy dispersive X-ray spectroscopy, scanning electron microscopy-energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy demonstrated that co-doping with Ge and GeO2 changed the microstructure of TiO2–Ta2O5–CaCO3 ceramics, thereby increasing the nonlinear coefficient and decreasing the breakdown voltage. The optimum doping concentrations of Ta2O5, CaCO3, Ge, and GeO2 exhibited the highest nonlinear coefficient (α=14.6), a lower breakdown voltage (EB=18.7 V mm−1), the least leakage current (JL=10.5 μA cm−2), and the highest grain boundary barrier (ΦB=1.05 eV). In addition, Ge and GeO2 function as sintering aids, which reduce the sintering temperature because of their low melting points. 相似文献
18.
Nb2O5 and Nb–Co doped 0.85BaTiO3–0.15Bi(Mg1/2Ti1/2)O3 (0.85BT–0.15BMT) ceramics were investigated. From XRD patterns, undesired phase was observed when the (Nb2O5/Nb-Co) doping levels exceed 3 wt.%/2 wt.%, giving rise to the deteriorate dielectric constant. The 0.85BT–0.15BMT ceramics doped with 2 wt.%Nb2O5 was found to possess a moderate dielectric constant (? ~ 1000) and low dielectric loss (tan δ = 0.9%) at room temperature and 1 kHz, showing flat dielectric behavior over the temperature range from ?55 to 155 °C. It was found that the formation of core–shell structure in the BT based ceramics is controlled by the doping sequence of Nb- and Bi-oxides. 相似文献
19.
The aim of the present work is to explore the possibility of incorporate a small amount of ZnO to improve the microstructure control of W-doped BIT-based materials. Two different processing routes have been used according to previous results reported for other materials: reaction and sintering in one single step and a previous calcination step. The sintering behaviour of the samples, the obtained crystalline phases and the microstructure analysis indicate that the reaction between ZnO and Bi2O3 plays a critical role during sintering. Both Bi2Ti2O7 and Zn2TiO4 secondary phases are stabilized when adding ZnO. Actually, when WO3 and ZnO are incorporated simultaneously to BIT materials, they interact stabilizing the Bi2Ti2O7 phase and avoiding the incorporation of W6+ into the BIT lattice. As a consequence, the electrical conductivity of the samples with ZnO is two orders of magnitude higher than that of the samples doped only with WO3, suggesting that WO3 does not form a solid solution with BIT. The curve dielectric constant vs temperature also reveals the role played by the Bi2Ti2O7 phase. 相似文献
20.
The effects of adding 1–8 wt% Y2O3 on phase formation and fracture toughness of Al2O3–xZrO2–Y2O3(AZY) ceramics were studied. Phase formations of the samples were characterized by the X-ray diffraction (XRD) technique. It was found that the major phase was rhombohedral-Al2O3, while the minor phase consisted of the monoclinic-ZrO2, tetragonal-ZrO2 and monoclinic-Y2O3. It was found that Y2O3 contents did not clearly influence grain shape of AZY ceramics. The results obtained from the microhardness test could be used to evaluate the fracture toughness. It was found that the smaller grains had high fracture toughness. The maximum fracture toughness of 4.827 MPa m1/2 was obtained from 4 wt% Y2O3. Refinement of lattice parameters using Rietveld analysis revealed the quantitative phases of AZY ceramics. This shows that under adding Y2O3 conditions the proportion of tetragonal-ZrO2 phase plays an important role for the mechanical properties of AZY ceramics. 相似文献