首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, we consider an infinite capacity N-policy M/G/1 queueing system with a single removable server. Poisson arrivals and general distribution service times are assumed. The server is controllable that may be turned on at arrival epochs or off at service completion epochs. We apply a differential technique to study system sensitivity, which examines the effect of different system input parameters on the system. A cost model for infinite capacity queueing system under steady-state condition is developed, to determine the optimal management policy at minimum cost. Analytical results for sensitivity analysis are derived. We also provide extensive numerical computations to illustrate the analytical sensitivity properties obtained. Finally, an application example is presented to demonstrate how the model could be used in real applications to obtain the optimal management policy.  相似文献   

2.
A single server is assigned to M parallel queues with independent Poisson arrivals. Service times are constant, but the server has the opportunity to initiate service at a given queue only at times forming a Poisson process. Four related scheduling policies are investigated: a simple first-come, first-serve policy for which the stability region is determined: a policy with maximum throughput, but requiring the server to have advance knowledge of service opportunities; a policy of threshold type, which is shown to be optimal among nonlookahead policies with preemption; and an adaptive policy, which when M=2 is shown to provide stability for all arrival rate vectors for which stability is possible under any nonlookahead policy with preemption. The work is motivated by the problem of transmission scheduling for a packet-switched, low-altitude, multiple-satellite system  相似文献   

3.
This paper considers a single non-reliable server in the ordinary M/G/1 queueing system whose arrivals form a Poisson process and service times are generally distributed. We also study a single removable and non-reliable server in the controllable M/G/1 queueing systems operating under the N policy, the T policy and the Min( N , T ) policy. It is assumed that the server breaks down according to a Poisson process and the repair time has a general distribution. In three control policies, we show that the probability that the server is busy in the steady-state is equal to the traffic intensity. It is shown that the optimal N policy and the optimal Min( N , T ) policy are always superior to the optimal T policy. Sensitivity analysis is also investigated.  相似文献   

4.
In this paper, we develop an expression for the expected waiting time in a single server queueing system subject to interruptions with alternately varying Poisson arrival and renewal service rates. This queueing system is useful to model situations in production, computer and telecommunication systems in which customer arrivals and service requirements differ depending on whether the server is working or not. We develop an expression for the expected waiting time by approximating the virtual delay process by a Brownian motion. Our approximation for the expected waiting time involves only the means and variances and does not depend on any assumptions regarding the interarrival, service or switching time distributions. We present simulation results to illustrate the quality of our approximations.  相似文献   

5.
This paper studies the control policy of the N policy M/G/1 queue with server vacations, startup and breakdowns, where arrivals form a Poisson process and service times are generally distributed. The server is turned off and takes a vacation whenever the system is empty. If the number of customers waiting in the system at the instant of a vacation completion is less than N, the server will take another vacation. If the server returns from a vacation and finds at least N customers in the system, he requires a startup time before providing service until the system is again empty. It is assumed that the server breaks down according to a Poisson process and his repair time has a general distribution. The system characteristics of such a model are analyzed and the total expected cost function per unit time is developed to determine the optimal threshold of N at a minimum cost.  相似文献   

6.
This paper represents two major extensions of Hakimi's one-median problem specialized on a tree network T:(i) queueing delay is explicitly included in the objective function, and (ii) probabilistic demands for service can originate continuously along a link as well as discretely at a node. Calls for service occur as a time-homogeneous Poisson process. A single mobile server resides at a facility located on T. The server, when available, is dispatched immediately to any demand that occurs. When a customer finds the server busy with previous demand, it is entered into a first-come first-served queue. One desires to locate a facility on T so as to minimize the average response time, which is the sum of mean queueing delay and mean travel time. Convexity properties of the average response time and related functions allow us to develop an efficient two-stage algorithm for finding the optimal location. We also analytically trace the trajectory of the optimal location when the Poisson arrival rate is varied. A numerical example is constructed to demonstrate the algorithm as well as the trajectory results.  相似文献   

7.
A repairable queueing model with a two-phase service in succession, provided by a single server, is investigated. Customers arrive in a single ordinary queue and after the completion of the first phase service, either proceed to the second phase or join a retrial box from where they retry, after a random amount of time and independently of the other customers in orbit, to find a position for service in the second phase. Moreover, the server is subject to breakdowns and repairs in both phases, while a start-up time is needed in order to start serving a retrial customer. When the server, upon a service or a repair completion finds no customers waiting to be served, he departs for a single vacation of an arbitrarily distributed length. The arrival process is assumed to be Poisson and all service and repair times are arbitrarily distributed. For such a system the stability conditions and steady state analysis are investigated. Numerical results are finally obtained and used to investigate system performance.  相似文献   

8.
We consider an infinite-buffer single server queue with batch Markovian arrival process (BMAP) and exhaustive service discipline under multiple adaptive vacation policy. That is, the server serves until system emptied and after that server takes a random maximum number H different vacations until either he finds at least one customer in queue or the server have exhaustively taken all the vacations. The maximum number H of vacations taken by the server is a discrete random variable. We obtain queue-length distributions at various epochs such as, service completion/vacation termination, pre-arrival, arbitrary, post-departure and pre-service. The proposed analysis is based on the use of matrix-analytic procedure to obtain queue-length distribution at a post-departure epoch. Later we use supplementary variable method and simple algebraic manipulations to obtain the queue-length distribution at other epochs using queue-length distribution at post-departure epoch. Some important performance measures, like mean queue lengths and mean waiting times have been obtained. Several other vacation queueing models can be obtained as a special case of our model, e.g., single-, multiple-vacation model and queues with exceptional first vacation time. Finally, the total expected cost function per unit time is considered to determine a locally optimal multiple adaptive vacation policy at a minimum cost.  相似文献   

9.
We analyze a single removable and unreliable server in an M/G/1 queueing system operating under the 〈p, N〉-policy. As soon as the system size is greater than N, turn the server on with probability p and leave the server off with probability (1 ? p). All arriving customers demand the first essential service, where only some of them demand the second optional service. He needs a startup time before providing first essential service until there are no customers in the system. The server is subject to break down according to a Poisson process and his repair time obeys a general distribution. In this queueing system, the steady-state probabilities cannot be derived explicitly. Thus, we employ an improved maximum entropy method with several well-known constraints to estimate the probability distributions of system size and the expected waiting time in the system. By a comparative analysis between the exact and approximate results, we may demonstrate that the improved maximum entropy method is accurate enough for practical purpose, and it is a useful method for solving complex queueing systems.  相似文献   

10.
Ali 《Performance Evaluation》2005,60(1-4):327-343
We consider a queueing system with a number of identical exponential servers. Each server has its own queue with unlimited capacity. The service discipline in each queue is first-come-first-served (FCFS). Customers arrive according to a state-dependent Poisson process with an arrival rate which is a non-increasing function of the number of customers in the system. Upon arrival, a customer must join a server’s queue according to a stationary state-dependent policy, where the state is taken to be the number of customers in servers’ queues. No jockeying among queues is allowed. Each arriving customer is limited to a generally distributed patience time after which it must depart the system and is considered lost. Two models of customer behavior are considered: deadlines until the beginning of service and deadlines until the end of service. We seek an optimal policy to assign an arriving customer to a server’s queue. We show that, when the distribution of customer impatience satisfies certain property, the policy of joining shortest queue (SQ) stochastically minimizes the number of lost customers during any finite interval in the long run. This property is shown to always hold for the case of deterministic customer impatience.  相似文献   

11.
This paper investigates a discrete-time single server batch service queue with multiple working vacations wherein arrivals occur according to a discrete-time renewal process. The server works with a different service rate rather than completely stopping during the vacation period. The service is performed in batches and the server takes a vacation when the system does not have any waiting customers at a service completion epoch or a vacation completion epoch. We present a recursive method, using the supplementary variable technique to obtain the steady-state queue-length distributions at pre-arrival, arbitrary and outside observer’s observation epochs. The displacement operator method is used to solve simultaneous non-homogeneous difference equations. Some performance measures and waiting-time distribution in the system have also been discussed. Finally, numerical results showing the effect of model parameters on key performance measures are presented.  相似文献   

12.
A dynamic control policy known as "threshold queueing" is defined for scheduling customers from a Poisson source on a set of two exponential servers with dissimilar service rates. The slower server is invoked in response to instantaneous system loading as measured by the length of the queue of waiting customers. In a threshold queueing policy, a specific queue length is identified as a "threshold," beyond which the slower server is invoked. The slower server remains busy until it completes service on a customer and the queue length is less than its invocation threshold. Markov chain analysis is employed to analyze the performance of the threshold queueing policy and to develop optimality criteria. It is shown that probabilistic control is sub-optimal to minimize the mean number of customers in the system. An approximation to the optimum policy is analyzed which is computationally simple and suffices for most operational applications.  相似文献   

13.
This paper investigates the N-policy M/M/1 queueing system with working vacation and server breakdowns. As soon as the system becomes empty, the server begins a working vacation. The server works at a lower service rate rather than completely stopping service during a vacation period. The server may break down with different breakdown rates during the idle, working vacation, and normal busy periods. It is assumed that service times, vacation times, and repair times are all exponentially distributed. We analyze this queueing model as a quasi-birth–death process. Furthermore, the equilibrium condition of the system is derived for the steady state. Using the matrix-geometric method, we find the matrix-form expressions for the stationary probability distribution of the number of customers in the system and system performance measures. The expected cost function per unit time is constructed to determine the optimal values of the system decision variables, including the threshold N and mean service rates. We employ the particle swarm optimization algorithm to solve the optimization problem. Finally, numerical results are provided, and an application example is given to demonstrate the applicability of the queueing model.  相似文献   

14.
This paper considers an (s,S) production inventory system with positive service time, with time for producing each item following Erlang distribution. Customers arrive according to a Poisson process. A customer who arrives when there is no inventory in the system is considered lost. On the other hand, a customer who finds a busy server with at least one inventory in the system joins a queue of infinite capacity. When the inventory level falls to s, production process is switched on, and it is switched off when the inventory level reaches back to S. Service time to each customer also follows an Erlang distribution. The service of a customer may be interrupted, where the time for such a phenomenon follows an exponential distribution, whenever it occurs. An interrupted service, after repair, resumes from where it was stopped. The correction/repair time follows an exponential distribution. We assume that the service of a single customer may encounter any number of interruptions and that the customer being served waits there until his service is completed. Moreover, at a time the server is subject to at most one interruption. We also assume that no inventory is lost due to a service interruption. Like the service process, the production process also is subject to interruptions, where the duration to an interruption follows an exponential distribution. However, in contrast to the service interruption, in the case of interruption to production process, we assume that the item being processed is lost because of interruption. That is, the production process, on being interrupted, restarts from the beginning, after repair. The repair time of an interrupted production process follows exponential distribution. Few of the last service phases are assumed to be protected in the sense that the service will not be interrupted while being in these phases. The same is assumed for the production process also.

The model is analysed as a level-independent quasi-birth–death process. We apply a novel method to obtain an explicit expression for the necessary and sufficient condition for the stability of the system under study. This method works even if we assume general phase-type distributions for the production as well as the service processes, and hence can be used to characterise the stability of inventory systems where the assumption of disallowing the customers to join the system, when there is a shortage of inventory has been made. Under stability, we apply matrix analytic methods to compute the system state distribution. In consequence to that, several system performance measures have been derived, and their dependence on the system parameters has been studied numerically.  相似文献   

15.
A useful model for buffer capacity design in communication systems is the single server queueing model with restricted accessibility where arriving customers are admitted only if their waiting plus service times do not exceed some fixed amount. A two-moment approximation for the buffer capacity in order to achieve a specific rejection probability is proposed for the case of Poisson arrivals and general service requirements. This approximation is a weighted combination of exact results for the special cases of deterministic and exponential service requirements where the weights use only the coefficient of variation of the general service requirement. Numerical experiments show an excellent performance of the approximation.  相似文献   

16.
The single server queue with vacation has been extended to include several types of extensions and generalisations, to which attention has been paid by several researchers (e.g. see Doshi, B. T., Single server queues with vacations — a servey. Queueing Systems, 1986, 1, 29–66; Takagi, H., Queueing Analysis: A Foundation of Performance evaluation, Vol. 1, Vacation and Priority systems, Part. 1. North Holland, Amsterdam, 1991; Medhi, J., Extensions and generalizations of the classical single server queueing system with Poisson input. J. Ass. Sci. Soc., 1994, 36, 35–41, etc.). The interest in such types of queues have been further enhanced in resent years because of their theoretical structures as well as their application in many real life situations such as computer, telecommunication, airline scheduling as well as production/inventory systems. This paper concerns the model building of such a production/inventory system, where machine undergoes extra operation (such as machine repair, preventive maintenance, gearing up machinery, etc.) before the processing of raw material is to be started. To be realistic, we also assume that raw materials arrive in batch. This production system can be formulated as an Mx/M/1 queues with a setup time. Further, from the utility point of view of idle time this model can also be formulated as a case of multiple vacation model, where vacation begins at the end of each busy period. Besides, the production/inventory systems, such a model is generally fitted to airline scheduling problems also. In this paper an attempt has been made to study the steady state behavior of such an Mx/M/1 queueing system with a view to provide some system performance measures, which lead to remarkable simplification when solving other similar types of queueing models.This paper deals with the steady state behaviour of a single server batch arrival Poisson queue with a random setup time and a vacation period. The service of the first customer in each busy period is preceded by a random setup period, on completion of which service starts. As soon as the system becomes empty the server goes on vacation for a random length of time. On return from vacation, if he finds customer(s) waiting, the server starts servicing the first customer in the queue. Otherwise it takes another vacation and so on. We study the steady state behaviour of the queue size distribution at random (stationary) point of time as well as at departure point of time and try to show that departure point queue size distribution can be decomposed into three independent random variables, one of which is the queue size of the standard Mx/M/1 queue. The interpretation of the other two random variables will also be provided. Further, we derive analytically explicit expressions for the system state (number of customers in the system) probabilities and provide their appropriate interpretations. Also, we derive some system performance measures. Finally, we develop a procedure to find mean waiting time of an arbitrary customer.  相似文献   

17.
The problem considered is that of optimally controlling a queueing system which consists of a common buffer or queue served by two servers. The arrivals to the buffer are Poisson and the servers are both exponential, but with different mean service times. It is shown that the optimal policy which minimizes the mean sojourn time of customers in the system is of threshold type. The faster server should be fed a customer from the buffer whenever it becomes available for service, but the slower server should be utilized if and only if the queue length exceeds a readily computed threshold value.  相似文献   

18.
R. D.  B. M. M.  N.  J. L.   《Performance Evaluation》2002,49(1-4):99-110
The study presented in this paper is motivated by the performance analysis of response times in distributed information systems, where transactions are handled by iterative server and database actions. We model system response times as sojourn times in a two-node open queueing network with a processor sharing (PS) node and a first-come-first-served (FCFS) node. External customers arrive at the PS node according to a Poisson process. After departing from the PS node a customer proceeds to the FCFS node with probability p, and with probability 1−p the customer departs from the system. After a visit to the FCFS node, customers are fed back to the PS node. The service requirements at both nodes are exponentially distributed. The model is a Jackson network, admitting a product-from solution for the joint number of customers at the nodes, immediately leading to a closed-form expression for the mean sojourn times in steady-state. The variance of the sojourn times, however, does not admit an exact expression—the complexity is caused by the possibility of overtaking. In this paper we propose a methodology for deriving simple, explicit and fast-to-evaluate approximations for the variance of the sojourn times. Numerical results demonstrate that the approximations are very accurate in most model instances.  相似文献   

19.
The Fractional Brownian motion (fBm) traffic model is important because it captures the self-similar characteristics of Internet traffic, accurately represents traffic generated as an aggregate of many sources, which is a prevalent characteristic of many Internet traffic streams, and, as we show in this paper, it is amenable to analysis. This paper introduces a new, simple, closed-form approximation for the stationary workload distribution (virtual waiting time) of a single server queue fed by an fBm input. Next, an efficient approach for producing a sequence of simulations with finer and finer detail of the fBm process is introduced and applied to demonstrate good agreement between the new formula and the simulation results. This method is necessary in order to ensure that the discrete-time simulation accurately models the continuous-time fBm queueing process. Then we study the limitations of the fBm process as a traffic model using two benchmark models — the Poisson Pareto Burst Process model and a truncated version of the fBm. We determine by numerical experiments the region where the fBm can serve as an accurate traffic model. These experiments show that when the level of multiplexing is sufficient, fBm is an accurate model for the traffic on links in the core of an internet. Using our result for the workload distribution, we derive a closed-form expression for service rate provisioning when the desired blocking probability as a measure of quality of service is given, and apply this result to a range of examples. Finally, we validate our fBm-based overflow probability and link dimensioning formulae using results based on a queue fed by a real traffic trace as a benchmark and demonstrate an advantage for the range of overflow probability below 1% over traffic modelling based on the Markov modulated Poisson process.  相似文献   

20.
In this paper we consider the queueing analysis of a fault-tolerant computer system. The failure/repair behavior of the server is modeled by an irreducible continuous-time Markov chain. Jobs arrive in a Poisson fashion to the system and are serviced according to FCFS discipline. A failure may cause the loss of the work already done on the job in service, if any; in this case the interrupted job is repeated as soon as the server is ready to deliver service. In addition to the delays due to failures and repairs, jobs suffer delays due to queueing. We present an exact queueing analysig of the system and study the steady-state behavior of the number of jobs in the system. As a numerical example, we consider a system with two processors subject to failures and repairs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号