首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Polyaniline (PANI) conducting polymer coatings have been obtained galvanostatically with various current densities (from 0·1 to 0·4 mA cm?2) and ZnNi alloy coatings have been obtained galvanostatically at 30 mA cm?2 current density. Corrosion protection performances of monolayered PANI and ZnNi alloy coatings and multi-layered ZnNi/PANI and PANI/ZnNi coatings on st-37 low carbon mild steel (MS) have been investigated by an open circuit potential method, Tafel extrapolation method and electrochemical impedance method in 3·5 wt-% NaCl solution. In addition, the surface morphology of the coatings has been characterised by using scanning electron microscopy (SEM). Synthesising PANI films between two metal layers provided better corrosion protection to the steel. MS/PANI/ZnNi layer formation exhibited the biggest corrosion protection performance among all layer formations of the films and protected MS for up to 72 h.  相似文献   

2.
Corrosion protection of epoxy coatings containing emeraldine base polyaniline (PANI) or hydrofluoric acid doped PANI on AZ91D magnesium alloy were studied by EIS and Pull-Off Adhesion Test. The results indicated that the addition of emeraldine base PANI or hydrofluoric acid doped PANI could improve the corrosion resistance of epoxy coating. The epoxy coating containing hydrofluoric acid doped PANI had the best performance of the corrosion protection among three systems under investigation. The corrosion product film was analyzed by XPS indicating that PANI changed the chemical structure of the corrosion film. The protective mechanism imparted by PANI was discussed.  相似文献   

3.
海洋环境中铝合金表面改性涂层的电化学性能   总被引:1,自引:1,他引:0  
李晓娟  刘栋  刘哲  李秉忠 《表面技术》2018,47(1):181-185
目的对换热管用6061铝合金表面进行改性防护,研究一种在其表面具有牺牲性阳极保护效果且腐蚀速率小的涂层材料。方法采用线材火焰喷涂工艺在6061铝合金表面制备不同成分的锌铝涂层,分别为纯Zn、Zn50、Al95、Al、Al-RE共5种涂层,使用SEM、EDS、XRD分析测试方法对涂层形貌及成分进行分析,并测定涂层在3.5%NaCl溶液中的Tafel曲线。结果相同参数下在铝合金表面制备的涂层表观质量良好,无明显缺陷,符合热喷涂对于涂层质量的要求。常温环境下,Zn、Zn50、Al95、Al、Al-RE涂层的电位比6061铝合金的电位更负,5种涂层对6061铝合金都具有阳极性保护层的作用。结论从腐蚀电流和腐蚀电位考虑,Al95、Al-RE作为牺牲性阳极保护涂层的作用会更好。  相似文献   

4.
目的用不同酸掺杂的聚苯胺微乳液制备水性防腐涂料,提高马口铁表面涂层的耐腐蚀性能。方法采用扫描电子显微镜、傅立叶变换红外光谱和热重分析表征聚苯胺性能,通过动电位极化法及耐水性、耐盐雾和耐盐水实验检测聚苯胺微乳液水性防腐涂层的防腐性能,用铅笔硬度和划格法表征涂层的硬度和附着力。结果磷酸掺杂聚苯胺微乳液、本征态聚苯胺微乳液制备的水性防腐涂层都对马口铁起到良好保护作用。含有盐酸掺杂聚苯胺微乳液和不含聚苯胺微乳液的水性防腐涂层在浸泡过程中很快失去保护作用。掺杂态聚苯胺使马口铁表面钝化和屏蔽,本征态聚苯胺起机械屏蔽作用。通过把聚苯胺微乳液添加到水性防腐涂料中,发现涂层的硬度和附着力均没有发生明显下降,表明聚苯胺微乳液在水性防腐涂料中分散均匀,对涂层的性能影响较小。结论当水性防腐涂料中的聚苯胺质量分数为0.3%时,磷酸掺杂的聚苯胺微乳液具有最佳的耐腐蚀性能,其腐蚀电流密度Jcorr=7.359×10-7 A/cm2,腐蚀电位Ecorr=-0.527 V。  相似文献   

5.
Electropolymerization of polyaniline (PANI) and polyaniline‐tungstate (PANIW) coatings on mild steel were successfully performed using cyclic voltammetry technique. Processes were carried out in aqueous electrolyte solutions of 0.3 M oxalic acid + 0.1 M aniline and 0.3 M oxalic acid + 0.1 M aniline + 0.001 M sodium tungstate dehydrate. Corrosion protection of PANI and PANIW coatings was evaluated with the help of open circuit potential (Eocp) monitoring and electrochemical impedance spectroscopy (EIS) methods. All the results reveal the influence of additional doping agent (i.e., tungstate) in corrosion protection behavior of PANI coating.  相似文献   

6.
In the study, polyaniline/reduced‐graphene oxide (PANI‐RGO) composites, fabricated by loading 2, 5, and 8wt% graphene oxide, was prepared by in‐situ emulsion polymerization and reduction. They are characterized by Fourier transform infrared spectroscopy, X‐ray diffraction, and scanning electron microscopy. Epoxy coatings adding PANI and PANI‐RGO composites were coated on the surface of AA5083 Al alloy. The anticorrosion performance of the coatings is measured by electrochemical impedance spectroscopy and potentiodynamic polarization curve in 3.5wt% NaCl solution. The results demonstrate that the epoxy/PANI‐RGO coating exhibits a better protection against AA5083 alloy corrosion compared with the epoxy/PANI coating. Enhancement of the passivation performance of PANI was obtained by the addition of RGO into epoxy/PANI coating system.  相似文献   

7.
Coatings based on self‐assembled molecules (SAMs) for corrosion protection of aircraft aluminum alloys have been studied to evaluate their potentialities as replacements to yellow chromate conversion coatings (CCC), due to the toxicity of these leading to environmental problems. In this work, the influence of alkane diphosphonates self‐assembling molecules on the corrosion resistance of the AA7475‐T761 cladded with AA7072 was investigated by electrochemical impedance spectroscopy and cathodic and anodic polarization curves, in naturally aerated 0.5 mol/L Na2SO4 aqueous solution, with pH adjusted to 4. Corrosion accelerated experiments (salt spray tests) were also carried out to examine the resistance of the SAM treated samples against corrosion. The results suggested that the development of boehmite (aluminum oxide) layer with incorporation of SAM was beneficial to the corrosion resistance of the tested aluminum alloy. Samples surface treated with SAM or aluminum oxide/SAM (without and with subsequent polyester layer) showed better corrosion resistance results than samples with CCC, indicating that this last type of coating containing hexavalent chromium could be replaced by the environmentally friendly pre‐treatment corresponding to boehmite growth followed by incorporation of SAM.  相似文献   

8.
Sulfuric acid doped nano‐polyaniline was prepared by direct mixed oxidation in two different systems. A novel approach for preparing polyaniline (PANI) in FeCl2/H2O2 system was developed. The PANI possessed an excellent dispensability. Corrosion protection of epoxy coatings containing two kinds of polyaniline (PANI) on Q235 steel was studied by electrochemical impendance spectroscopy (EIS) technique and Tafel polarization test in 3.5 wt% sodium chloride (NaCl) aqueous solution. The results indicated that the epoxy coating containing PANI obtained in FeCl2/H2O2 system had the best performance of the corrosion protection among three systems under investigation. The possible protective mechanism of PANI was discussed.  相似文献   

9.
Poly(N-methylaniline) (PNMA) coatings have been electropolymerized on 304 stainless steel alloy by potentiodynamic, galvanostatic and potentiostatic synthesis techniques from aqueous solutions of 0.1 M N-methylaniline (NMA) and 0.3 M oxalic acid. Characterization of PNMA coatings was carried out by cyclic voltammetry, UV-Vis and FTIR spectroscopy techniques. Corrosion behavior of PNMA coated stainless steel electrodes was investigated using linear anodic potentiodynamic polarization, Tafel test, chronoamperometry and electrochemical impedance spectroscopy (EIS) techniques in 0.5 M aqueous HCl solutions. Corrosion test results showed that PNMA coatings possessed protection to uncoated stainless steel against corrosion.  相似文献   

10.
Sol–gel coatings cannot provide adequate corrosion protection for metal/alloys in the corrosive environments due to their high crack‐forming potential. This paper demonstrates the possibility to employ cerium nitrate as inhibitor to decrease the corrosion development of sol–gel‐based silane coating on the magnesium alloy in NaCl solution. Cerium nitrate was added into the NaCl solution where the silane coating coated magnesium alloy was immersed. Scanning electron microcopy (SEM) was used to examine surface morphology of the silane coating coated magnesium alloy immersed in NaCl solutions doped and undoped with cerium nitrate. The corrosion electrochemical behaviors were investigated using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests. The results showed that the introduction of cerium nitrate into NaCl solution could effectively inhibit the corrosion of the silane coating coated magnesium alloy. Moreover, the influence of concentration of cerium nitrate on the corrosion inhibition and the possible inhibiting mechanism were also discussed in detail.  相似文献   

11.
BECAUSE OF A HIGHER CHEMICAL ACTIVITYzinc and zinc alloys(in bulk or in coating form)corrode rapidly in moist atmospheres recovering withwhite corrosion products—white rust and in acidicclimatic conditions becoming grey[l].So passivition orchemical conversion treatments is often needed fortheir corrosion protection.This is generally done bymeans of chromate treatment which offers a goodcorrosion inhibition.However,chromates are highlytoxic and carcinogenic[2]and their use can lead…  相似文献   

12.
用Kelvin探头技术研究铝合金的大气腐蚀   总被引:2,自引:0,他引:2  
选择航空工业广泛使用的铝、铝合金及其涂层的试样,利用自行研制的Kelvin探头大气腐蚀测定仪、扫描电镜等设备,研究了纯铝试样随温、湿度变化,其表面电位的变化规律,测定了铝合金及涂层试样大气曝晒试验和周浸试验前后的表面电位、形貌,对铝、铝合金以及涂层的腐蚀规律进行了初步的探讨.结果表明,纯铝试样表面无可见液膜时,腐蚀电位随相对湿度增加逐渐下降;表面有可见液膜时,随着液层蒸发逐渐减薄,电位逐渐正移.铝合金裸材在北京大气环境下电位变化较小,且各个位置的电位基本相同.带涂层的试样优先在缺陷处发生腐蚀,并不断向周围扩展,涂层的剥离面积不断增大.涂层的铝合金,划痕处在腐蚀发生的初期腐蚀电位向负方向变化很快,但是随着时间的延长,腐蚀电位变化的速率减慢,并有向正方向移动的趋势.   相似文献   

13.
为了考察不同投料顺序对镁合金表面层状双金属氢氧化物(LDHs)涂层性能的影响,并得到一种具有较好耐腐蚀能力的镁合金防腐蚀涂层,通过水热合成法采用不同投料顺序在镁合金表面原位沉积LDHs涂层。使用SEM、XRD、EIS、Tafel曲线和直接浸泡的方法,分别对LDHs涂层的表面形貌、结构和耐腐蚀性能进行评估。结果发现,采用不同的投料顺序得到了不同表面形貌、相似结构和不同耐腐蚀能力的LDHs涂层。所有LDHs涂层的自腐蚀电位、自腐蚀电流密度和阻抗模量相对于基底都分别发生了明显的正移、下降和增加,电位正移值约为0.7 V,自腐蚀电流密度降低值达到3~4个数量级,阻抗模量增加约4个数量级。以上结果表明通过控制投料顺序可以得到具有不同表面形貌的LDHs涂层。采用向硝酸铝中添加硝酸镁后调节溶液p H,再加入碳酸钠的投料顺序,得到LDHs涂层在NaCl溶液中的耐腐蚀能力最好。  相似文献   

14.
The amino-tri-(methylenephosphonic acid) layers were adsorbed on the surface of AA6061 aluminum alloy for improving the lacquer adhesion and corrosion inhibition as a substitute for chromate coatings. The surface structure and characteristic of the amino-tri-(methylenephosphonic acid) layers on AA6061 aluminum alloy were investigated by means of XPS and ATR-FTIR analysis. The analyzed results showed that the amino-tri-(methylenephosphonic acid) adsorption layers adsorb on the surface of aluminium alloy via acid-base interaction in a bi-dentate conformation. After the amino-tri-(methylenephosphonic acid) layers were coated with epoxy resin, the layers showed good adhesive strength and favorable corrosion resistance in contrast to chromate coatings.  相似文献   

15.
通过在钢基体表面制备涂层可以很好地延长钢铁材料的服役时间,减少因腐蚀造成的重大事故和人员伤亡。相较于传统的纯Zn涂层、纯Al涂层以及Zn-Al合金涂层,Zn-Al伪合金涂层能够为基体材料提供长久有效的腐蚀防护,在钢铁材料的腐蚀防护中具有巨大的应用潜力。简述了Zn-Al伪合金涂层电弧喷涂制备工艺的特点;介绍了Zn、Al、Zn-Al合金及Zn-Al伪合金涂层在模拟海洋环境下的腐蚀防护原理;在此基础上从组分、喷涂工艺参数(喷涂距离、喷涂电流和喷涂电压)、元素掺杂(Mg、Si及Re)及后处理工艺(封孔、激光重熔)等角度,论述了其对Zn-Al伪合金涂层耐蚀性的影响;讨论了Zn-Al伪合金涂层防腐体系在桥梁、海洋钢结构件、地下运输管道中的应用现状;最后总结了目前研究工作中存在的挑战,提出了电弧喷涂Zn-Al伪合金涂层尚需深入研究的重点问题,为提高钢铁材料使用寿命提供了参考。  相似文献   

16.
A series of polyaniline (PANI)/montmorillonite (MMT) nanocomposite materials has been successfully prepared by in-situ emulsion polymerization in the presence of inorganic nanolayers of clay with camphorsulfonic acid (CSA) and ammonium peroxydisulfate (APS) as surfactant and initiator, respectively. The nanocomposite materials were characterized by Fourier Transformation Infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). Epoxy resin was used as a binder for the nanocomposites in order to obtain a thick and uniform coating. In order to understand the effect of MMT and PANI on the corrosion inhibition performance of the epoxy coatings in 3.5% saline solution at 65 °C, the epoxy (E), epoxy blend with polyaniline (EP), epoxy blend with polyaniline and MMT (EPM) coatings were investigated by electrochemical impedance spectroscopy (EIS). The results showed that EPM coatings with 5% clay on pretreated aluminum by anodizing were much superior in corrosion protection, with respect to the other samples. Incorporation of PACN nanocomposites inside the epoxy significantly increases the resistance of the coating in comparison to the other coatings in 3.5% saline solution at 65 °C. These phenomena can be attributed to specific morphology of the nanocomposite.  相似文献   

17.
2A12 铝合金硬质阳 极氧化及膜层性能研究   总被引:6,自引:3,他引:3  
目的对混合酸电解液体系中2A12铝合金硬质阳极氧化膜层的制备及性能进行研究。方法采用以硫酸为主的混合酸电解液体系,对2A12铝合金进行硬质阳极氧化,研究混合酸电解液主要成分对2A12硬质阳极氧化膜层性能的作用和影响。结果在硫酸的溶解、有机酸吸附以及添加剂的耦合作用下,混和酸电解液避免了2A12铝合金硬质阳极氧化膜制备过程中存在的烧蚀现象,膜层平均硬度达到400HV0.05以上。WX添加剂能够明显改善2A12铝合金硬氧化膜层的耐蚀性能,经过168 h的中性盐雾试验,仅出现了5%的白霜,但与相同厚度的7A04铝合金硬质阳极氧化膜层相比,耐蚀性较差。结论建议制备有耐蚀性要求的硬质阳极氧化膜层时选用铜含量较低的铝合金材料。  相似文献   

18.
Several types of coatings, designed to improve the resistance of aluminum alloys to corrosion in seawater, were examined. A coating with a thickness of approximately 30 μm was applied to the surface of aluminum alloy 3003, and after creating an artificial defect by means of a knife‐edge, a corrosion test was carried out in 3% NaCl solution at a temperature of 70°C and pH 1.5. The test results showed that a fluorine resin and sol‐gel coatings both had excellent barrier abilities. The fluorine resin coating had self‐healing abilities, and this was improved by the addition of a metal powder.  相似文献   

19.
采用钛酸盐和锆酸盐为主盐,开发了一种应用于2024铝合金表面的无铬钛锆转化膜。通过扫描电镜 (SEM)、能谱分析 (EDS)、中性盐雾实验、动电位极化曲线和电化学阻抗谱对转化膜的表面形貌、成分及耐蚀性能进行了表征和分析。结果表明:制备的无铬钛锆转化膜由微米级的微小颗粒组成,膜层均匀平整,无明显缺陷;无铬钛锆转化处理后的2024铝合金,经中性盐雾168 h,无明显腐蚀产物产生;钛锆转化膜具有较低的腐蚀电流和一定的钝化能力,可有效的提高铝合金的耐蚀性能。  相似文献   

20.
Corrosion behaviour of hot galvanized steel in warm water Pipe specimens made of commercial grade galvanized steel and zinc have been tested in comparison to pipe specimens having modified zinc coatings. The specimens were corroded in 11 test lines with warm water at approx. 60 °C and cold water with continuous and intermittent flow. Dortmund town water with polyphosphate and orthophosphate additions in individual test lines was used for the tests. One test line was operated with warm water from a water heater with cathodic vessel protection according to the Guldager method. The investigation included visual assessment, determination of mass loss, and electrochemical measurements. The main results were as follows: 1. The localised corrosion tendency is not determined by the amount of potential ennoblement, but rather by the inhibition of the cathode reaction on the surface layer formed, which can be read off the cathodic current density vs. potential curve. The inhibition of the cathode reaction can be affected both by variations of the material and by variation of the water quality. 2. The tested materials with modified coatings featured throughout a poorer corrosion behaviour in warm water than commercial zinc coatings according to DIN 2444. 3. The phosphates used for the investigation induce an inhibition of the cathode reaction in zinc. Zinc-iron alloy phases in warm water fail to ensure an appropriate effect. A treatment of the water according to the Guldager process ensures a strong inhibition of the cathode reaction both with zinc and especially with zinc-iron alloy phases and induces an important improvement of the corrosion behaviour of galvanized steel in warm water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号