首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
统一电能质量调节器(UPQC)由串联型有源滤波器和并联型有源滤波器组合而成。在常规功率控制策略中,串、并联变流器与馈线之间存在的有功功率环流增大了串、并联单元的容量负担和损耗,且当电源电压跌落较大时,串、并联单元在补偿电能质量过程中有可能发生容量越限。提出了基于有功和无功功率协调分配的UPQC控制策略,通过合理分配串、并联变流器的功率输出,充分发挥串联变流器的作用,使得串联变流器承担部分负载无功功率以减轻并联变流器的负担,并消除有功功率环流;基于并联变流器补偿容量恒定的原则分配电源与储能单元提供的有功功率,以减小配电网馈线过电流的风险,并保证串、并联单元在补偿电能质量过程中不会发生容量越限。在电源电压完全跌落的极限情况下,负载有功完全由储能提供,实现了不间断电源的功能。在PSCAD/EMTDC中搭建了仿真算例,结果验证了所提策略的正确性和有效性,能够实现UPQC串、并联变流器以及储能单元的协调控制。  相似文献   

2.
This paper proposes a new adaptive control algorithm for a three-phase current-source shunt active power-line conditioner (APLC) operating under unbalanced and distorted network conditions. This control scheme aims at compensation of network’s reactive power, elimination of active power’s oscillating components, compensation of network current and voltage harmonic contents resulting in sinusoidal waveforms, and equilibrating the drawn power from the source evenly between the three-phases. Unlike many of the existing methods, the proposed strategy does not require any coordinate transformations or complicated calculations. The reference signals for the hysteresis-band current controlled voltage-source converter (HBCC-VSC) are generated by passing the measured current and voltage signals through two layers of modified adaptive notch filters (ANFs). To ensure superb performance and minimum total harmonic distortion (THD) level of the power system, parameters of the HBCC-VSC are obtained using differential evolution (DE) optimization algorithm. The proposed strategy is simple, easily implementable, and robust against uncertainty or variations of power system parameters and loads. The effectiveness of the proposed control scheme is validated by simulation results of a selected network under various load and power system conditions.  相似文献   

3.
This paper presents a method of amplitude control and unbalance compensation of the load voltage using a series–shunt power converter. The series power converter works to obtain a constant balanced sinusoidal load voltage. The shunt converter regulates the DC link voltage and compensates for the reactive current of the source within the rated current of the converter. To design the required capacity for the series–shunt power converter, the relation between the converter capacity and the load power factor at constant compensation voltage is introduced. The required capacity of the series–shunt power converter is reduced by more than 50% compared with that of a conventional series power converter. The effectiveness of the proposed load voltage compensation technique using the series–shunt power converter is verified by experiments. © 2001 Scripta Technica, Electr Eng Jpn, 136(3): 39–48, 2001  相似文献   

4.
This article proposes power quality improvement in a three-phase AC mains-fed telecommunication power supply by using an improved power quality converter. Conventional telecommunication tower power supplies suffer from power quality problems, such as high input current harmonic distortion, low power factor, and voltage distortions at the utility interface. To mitigate these problems, modern AC-DC converters with power factor correction circuits are used at the utility interface. An integrated boost converter is used as a power factor corrector with an isolated DC-DC converter at the load end to form the proposed telecommunication power supply. The power factor correction converter mitigates the harmonic contents of the AC mains current and improves the power factor, whereas the isolated converter provides regulated load voltage and isolation. Voltage control is used for regulating the DC voltage of the isolated converter, while the power factor correction integrated boost converter employs a current control loop to shape input current to sinusoidal in-phase with voltage. The design, modeling, and simulation results are presented to demonstrate the effectiveness of the power supply at various AC mains voltages and loads. A prototype of the front-end converter is developed, and recorded test results are presented here to validate the simulated performance.  相似文献   

5.
传统的通用电能质量控制器(GPQC)直流侧如果没有储能装置,则无法实现不间断供电;即使直流侧装设储能装置,蓄电池储能或超级电容器储能都存在补偿时间、补偿容量及使用寿命均有限等问题。为此提出了一种由两个并联变换器和两个串联变换器构成(每一个并联变换器和串联变换器都通过一个直流电容交错的连接在一起)的新双电源交错备用型通用电能质量控制器(DPS-GPQC)和一种简单有效的控制策略。DPS-GPQC能够同时补偿电网谐波电压、电压跌落和上升、电压中断、三相电压不平衡、谐波电流及无功电流,且能够实现两个不同电源之间能量的交错备用。基于MATLAB/SIMULINK的仿真结果表明了DPS-GPQC良好的性能和所提控制策略的有效性。因此,所提结构既能同时解决两个不同系统的大多数电能质量问题,又可以有效提高电力系统的供电可靠性。  相似文献   

6.
In this paper, instantaneous reactive power theory (IRP), also known as pq theory based a new control algorithm is proposed for 3-phase 4-wire and 4-leg shunt active power filter (APF) to suppress harmonic currents, compensate reactive power and neutral line current and balance the load currents under unbalanced non-linear load and non-ideal mains voltage conditions. The APF is composed from 4-leg voltage source inverter (VSI) with a common DC-link capacitor and hysteresis–band PWM current controller. In order to show validity of the proposed control algorithm, compared conventional pq and pqr theory, four different cases such as ideal and unbalanced and balanced-distorted and unbalanced-distorted mains voltage conditions are considered and then simulated. All simulations are performed by using Matlab-Simulink Power System Blockset. The performance of the 4-leg APF with the proposed control algorithm is found considerably effective and adequate to compensate harmonics, reactive power and neutral current and balance load currents under all non-ideal mains voltage scenarios.  相似文献   

7.
This paper gives a new insight into the concept of load compensation using shunt active filter (SAF) under ideal and non-ideal source voltage conditions. A novel approach based on an improved instantaneous active and reactive current component method is proposed. The performance of the proposed control strategy has been compared with instantaneous reactive power theory, symmetrical component theory and dq theory. SAF has been realized by three-phase voltage source converter. Reference currents generated by control strategies has been tracked by a SAF in a hysteresis band control scheme. The performance of the proposed scheme is evaluated in terms of reactive power compensation, reduction in magnitude of source currents, compensator currents, and harmonic compensation as per IEEE-519 standard. To ascertain the viability of the proposed control algorithm, the performance is evaluated under different source voltage conditions with the IEEE Standard-1459 power definitions. Variation in magnitude as well as harmonic content of source voltage has been considered. Under balanced sinusoidal source voltage condition, all control strategies congregate to similar results. Under unbalanced sinusoidal source voltage condition, dq theory and proposed theory have shown similar performance. However, under distorted source voltage conditions, an improved instantaneous active and reactive current component theory presents superior performance. A three-phase, three-wire distribution system supplying non-linear load is considered for simulation study. Simulation results from a complete model of SAF are presented to validate and compare the control strategies.  相似文献   

8.
Power converters have been widely used in many industrial applications. On the ac side of such converters, the current is distorted because of nonlinearity of the power devices even when the source voltage is sinusoidal. This implies that the power converter is regarded as a harmonic-current source. The harmonic current is one of the most important factors in the analysis of converters. This paper analyzes power flow of a power converter that behaves synchronously with the line frequency. Power-flow analysis in a three-phase diode converter with a resistance on the ac side is presented. The analysis is compared with conventional analysis with the assumption that the ratio of the resistance on the ac side to that on the dc side is very small. The proposed power flow concept enables electrical engineers and students to discuss rationally the power flow of a converter. © 1997 Scripta Technica, Inc. Electr Eng Jpn, 120(1): 70–76, 1997  相似文献   

9.
This paper is proposed to establish a new control algorithm for UPQC (unified power quality conditioner) to improve power quality and manage effectively equal reactive power sharing between shunt and series inverter of UPQC under unbalanced source voltage condition. The extraction of instantaneous power angle for reactive power sharing faces difficulty with unbalanced source voltage condition. This paper presents a new SRF (synchronous reference frame) based PAC (power angle control) method using decoupled load current parameters for efficient utilization and coordination of UPQC inverters. The proposed controller contributes in improvement of source current and load voltage harmonic profile, provides efficient way of load reactive power compensation and load voltage compensation for sag, swell and unbalanced condition. Effect of source voltage variations in the form of sag, swell or unbalancing on variable power angle estimation and reactive power calculations are also validated through a mathematical analysis. SRF based PAC control approach and PAC based UVT (unit vector template) control approach is adapted for estimating the reference signals of shunt and series inverter respectively and thus reducing the need of extra computation. The simulation and experimental analysis is carried out using Matlab/Simulink software package for computer simulation and a dSPACE based experimental setup for real time verifications.  相似文献   

10.
Active power filters have been used in practice to suppress the harmonic interference in power systems. To compensate for harmonic currents of loads, active power filters usually are connected to power systems in parallel with the loads. These filters, which are called shunt active filters here, are very effective for loads that can be considered as current sources, such as thyristor rectifiers with large dc reactances. Many papers have covered the shunt active filters applied to these current-source loads, however, none has discussed characteristics of the shunt active filters when they are applied to voltage-source loads. On the other hand, since more and more diode rectifiers with capacitive dc filters have recently been used, harmonics generated by them have become an issue. The diode rectifier with capacitive dc filters behaves as a voltage source rather than a current source. When a shunt active filter is applied to such a diode rectifier, the current injected from the shunt active filter may flow into the diode rectifier. As a result, harmonics of the source current cannot be reduced effectively, and harmonic current flowing into the diode rectifier increases greatly. This paper presents the aforementioned problem of shunt active filters analytically and experimentally. Then a series active filter is proposed to suppress the harmonic current of the diode rectifiers. The features, operating conditions, and considerations of shunt active filters and series active filters are described analytically and demonstrated experimentally. Taking a diode rectifier with capacitive dc filter as a typical voltage-source load, compensation characteristics of shunt active filters and series active filters are discussed by experiment and simulation. The validity of the series active filters is illustrated experimentally.  相似文献   

11.
In this paper a novel configuration employing multistage two-leg three phase converters for UPFC is proposed. The switching level modeling of UPFC is carried out using IGBT based shunt and series converters. The proposed converter has the capability of delivering sinusoidal input current with unity power factor and bidirectional power flow. The operating performance of UPFC is demonstrated on Single Machine Infinite Bus (SMIB) system and IEEE 14 Bus system for different load conditions. The real and reactive power tracings through the transmission lines in the system are obtained. The simulation study is carried out in a MATLAB/SIMULINK environment. The proposed topology effectively controls the real and reactive power flow in the transmission lines. This model considerably improves the system stability by damping the oscillation during the vulnerable conditions.  相似文献   

12.
A single-phase three-level pulsewidth modulation (PWM) AC/DC converter with the function of power factor corrector and active power filter is proposed to reduce harmonic currents flowing into the power system and to draw a nearly sinusoidal current with unity power factor. The circuit topology of the adopted three-level PWM AC/DC converter is based on a conventional two-level full-bridge rectifier and one AC power switch. The control signals of the power switches are derived from the voltage balance compensator, current controller and detected operation region of mains voltage. A three-level PWM voltage pattern on the AC side of the converter in each half cycle of mains frequency is generated. Computer simulations are implemented to confirm the operation of the adopted converter with the function of power factor corrector and active power filter.  相似文献   

13.
This paper presents a frequency response analysis of current controllers based on selective harmonic compensation schemes for three-phase voltage–source shunt Active Power Filters (APFs). To perform this analysis, the time delay introduced by the inverter and the sampling is taken into account in the current controller closed loop transfer function. Doing this, the differences among the schemes are pointed out, demonstrating the importance and effectiveness of the delay compensation to maintain the whole system stability. In addition, the performance of each current controller is evaluated by means of the total harmonic distortion of the mains line current and time response for fast load variations. The main goal is to identify the most suitable solution in terms of current controllers based on selective harmonic compensation for an industrial implementation. All the considered current control schemes have been tested on the same digital platform. Experimental results are presented for a 25-kVA shunt APF prototype compensating a nonlinear inductive load. Copyright © 2009 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

14.
An interleaved half‐bridge converter is presented for high input voltage application. The features of the proposed converter are zero voltage switching (ZVS) turn‐on for all active switches, ripple current reduction at output side, load current sharing and load voltage regulation. Two half‐bridge converters connected in series and two split capacitors are used to limit the voltage stress of each power switch at one‐half of input DC bus voltage. Thus, active switches with low voltage stress can be used at high input voltage application. On the other hand, the output sides of two half‐bridge converters are connected in parallel to share the load current and reduce the current stresses of the secondary windings and the rectifier diodes. Since two half‐bridge converters are operated with interleaved pulse‐width modulation (PWM), the output ripple current can partially cancel each other such that the resultant ripple current at output side is reduced and the size of output inductors can be reduced. In each half‐bridge converter, asymmetrical PWM scheme is used to regulate the output voltage. Based on the resonant behavior by the output capacitance of MOSFETs and the leakage inductance (or external inductance) of transformers, active switches can be turned on at ZVS during the transition interval. Thus, the switching losses of power MOSFETs are reduced. The proposed converter can be applied for high input voltage applications such as three‐phase 380‐V utility system. Finally, experiments based on a laboratory prototype with 960‐W rated power are provided to demonstrate the performance of proposed converter. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
High-power phase-controlled converters suffer from several fundamental disadvantages. They inject current hannonics into the input ac mains due to their nonlinear characteristics, thereby distort the supply voltage waveform, and demand ractive power from the associated ac power systems at retarded firing angles; also the output voltage is not smooth dc but contains superimposed harmonic ripples. A novel sequential control technique is suggested, which, when applied to more than one converter in cascade, substantially overcomes these disadvantages. The method consists of specifying the proportions of the maximum power to be handled by the individual converters and incorporating a sequence controller, the function of which is to ensure that at any output voltage the converter supplying the minimum power operates over the ful range of thyristor firing angles. The firing angles of other converters are restricted to values corresponding to their ratings. A generalized method of optimizing the performance of sequentially controlled cascaded converters is presented, and the economic viability of the proposed scheme is examined. It is shown that the effective ratings of thyristors in the proposed scheme are greatly reduced. The method should offer improved converter performance in variable speed dc drives, solid-state slip-energy recovery systems, or high-voltage dc transmission systems.  相似文献   

16.
In this paper a novel configuration of unified power flow controller (UPFC) which consists of two shunt converters and a series capacitor is proposed. In this configuration, a series capacitor is used between two shunt converters to inject desired series voltage. As a result, it is possible to control the active and reactive power flow as same as the conventional configuration of UPFC. The main advantage of the proposed UPFC in comparison with the conventional configuration is injection of a series voltage waveform with a very low total harmonic distortion (THD). Also, using two shunt converters instead of a series and a shunt converters, results in reduction of design efforts and simplification of control, measuring and protection strategies. An optimal control strategy based on the discrete model of converters is applied to shunt converters. The proposed UPFC is simulated using PSCAD/EMTDC and MATLAB software and simulation results are presented to validate the effectiveness of the novel configuration of UPFC. Also, the experimental results which are obtained from an experimental set-up are presented.  相似文献   

17.
An immittance converter has fine performance in many power electronics applications. Its function is to convert voltage sources into current sources and current sources into voltage sources. The immittance converter has an input impedance that is proportional to the admittance of loads connected across output terminals. Therefore, in this converter, the output current is proportional to the input voltage and the input current is proportional to the output voltage. Consequently, it converts a constant voltage source into a constant current source and a constant current source into a constant voltage source. When an immittance converter operates at a resonant frequency and is inserted to high-frequency link systems, voltage source outputs turn into current source outputs and current source outputs turn into voltage source outputs. Some power electronics applications of this converter are photovoltaic inverters and dc-dc converters with constant current outputs. It is well known that a quarter-wavelength transmission line shows immittance conversion characteristics. However, it has a very long line length for its switching frequency (e.g., 20 kHz), and is not suitable for power electronics applications. Therefore we propose five immittance converters that consist of lumped L and C elements and show the immittance conversion characteristics at a resonant frequency. These immittance converters are much smaller and lighter than the transmission line. Their principles, basic circuits, and basic characteristics are described in this paper. We also evaluate their application to high-frequency link systems of power electronics. © 1998 Scripta Technica, Electr Eng Jpn, 124(2): 53–62, 1998  相似文献   

18.
Direct current control has been used in many voltage source converters connected to the grid, such as shunt active power filters. In their stationary coordinates control systems, there are two closed control loops, one is the current loop and the other is the voltage loop. In practical applications, because the voltage source converters are connected to the grid, the output current will be affected, a quite significant tracking error exists in the current control loop while the actual output current of the converter is still satisfactory. Analyses and design considerations are carried out to investigate this confusing issue. The tracking error is caused by the source voltage; it is an active current and does not affect the compensation results of reactive and harmonic current. The variables that affect the current tracking error are identified, then the influence of tracking error is proposed to guide practical applications. Experimental results verify the analyses and design considerations.  相似文献   

19.
Real and reactive power coordination for a unified power flow controller   总被引:2,自引:0,他引:2  
This paper proposes a new real and reactive power coordination controller for a unified power flow controller (UPFC). The basic control for the UPFC is such that the series converter of the UPFC controls the transmission line real/reactive power flow and the shunt converter of the UPFC controls the UPFC bus voltage/shunt reactive power and the DC link capacitor voltage. In steady state, the real power demand of the series converter is supplied by the shunt converter of the UPFC. To avoid instability/loss of DC link capacitor voltage during transient conditions, a new real power coordination controller has been designed. The need for reactive power coordination controller for UPFC arises from the fact that excessive bus voltage (the bus to which the shunt converter is connected) excursions occur during reactive power transfers. A new reactive power coordination controller has been designed to limit excessive voltage excursions during reactive power transfers. PSCAD-EMTDC simulation results have been presented to show the improvement in the performance of the UPFC control with the proposed real power and reactive power coordination controller.  相似文献   

20.
配电网串并联复合有源电力滤波器的仿真研究   总被引:8,自引:0,他引:8  
分析了并联型和串联型电能质量补偿器分别补偿负荷电流和电源电压的缺陷及原因,介绍了串并联复合有源电力滤波器(SPAPF)同时补偿电网畸变电压和抑制负载谐波电流的运行机理,提出了适合于SPAPF的电源畸变电压参考量比较检测法、负荷谐波电流dqo检测法以及一种改进的稳定直流电容电压的PI控制策略。仿真结果验证了分析的正确性与设计方案的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号