首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Synthetic Metals》2006,156(5-6):488-494
PPy|SO4 and PPy|ClO4 films have been synthesized and investigated in K2SO4, ZnSO4 and NaClO4 aqueous solutions by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and electron probe microanalysis (EPMA) methods. On the basis of obtained data and calculated impedance parameters as the potential functions, the role of different processes (diffusion of ions, double-layer charging, adsorption and charge transfer) in oxidized, partially reduced and reduced PPy films is estimated. The lowest pseudocapacitance values (from n × 10−6 to n × 10−4 μF cm−2 for 1 μm film), independent of solution concentration, were established for PPy|SO4 in ZnSO4. This phenomenon is related with strongly aggravated film reduction process in the solution of double-charged cations. In the case of PPy|ClO4 in NaClO4 and PPy|SO4 in K2SO4,where the mono-charged cations participate in redox process, the capacitance values are in the range from: n × 10−3 to n × 10−2 μF cm−2 and even somewhat higher for PPy|ClO4 system at oxidized state. The calculated effective diffusion coefficients of ions D remain inside the range from n × 10−12 to n × 10−14 cm2 s−1 for PPy|SO4 in 0.1 M K2SO4 and PPy|ClO4 in 0.1 M NaClO4 aqueous solution. In the case of PPy|SO4 film in ZnSO4 solution the D values are essentially lower.  相似文献   

2.
《Synthetic Metals》2006,156(5-6):444-453
Electropolymerization of aniline in sulfuric acid solution in the presence of o-phenylenediamine (oPD) of various concentrations was investigated via the electrochemical quartz crystal microbalance (EQCM) technique. It was found that the polymerization occurred more favorably at high aniline-to-oPD molar ratios (F1, 20 or above). The stabilities of the resultant copolymers against degradation were efficiently improved compared with that of polyaniline (PANI). The first-order kinetic constants for polymer degradation were estimated to be 2.07 × 10−3 s−1 for polyaniline, and 3.91 × 10−4 and 1.28 × 10−4 s−1 for copolymers with F1 values of 50 and 20, respectively. The degradation product, benzoquinone, was also detected at the tip electrode of a scanning electrochemical microscope (SECM).  相似文献   

3.
《Synthetic Metals》2001,123(2):349-354
The kinetics of the electrochemical degradation of polyaniline (PANI) layers, deposited by electropolymerization and chemical polymerization onto platinum electrode, was investigated in an acid aqueous solution. The degradation rate was shown to depend greatly on the electrode potential applied. First-order rate constants of degradation, obtained from the kinetic data, were shown to vary between 2.87×10−5 and 3.11×10−3 s−1 for thick PANI films, having the electrochemical charge density of 14 mC/cm2, and between 2.0×10−5 and 3.60×10−3 s−1 for thin PANI films, having the charge density of 1.5 mC/cm2, within the electrode potential range of 0.3–0.9 V versus Ag/AgCl. Two linear regions were found to present on the dependencies of logarithm of the first-order degradation rate constant on electrode potential, one of them having a slope of 0.44 and 1.34 V−1 within electrode potential limits of 0.3–0.6 V, and another one having a slope of 6.37 and 6.39 V−1 within potential limits of 0.6–0.9 V, for thick and thin polymer films, respectively. The results obtained show that the electrochemical degradation of PANI films proceed at a remarkable rate even at low electrode potential values.  相似文献   

4.
Nano-sized polyaniline (PANI) films were electrochemically deposited onto an ITO substrate by a pulse galvanostatic method (PGM) in an aqueous solution. The morphology of the as-prepared PANI film was characterized using a field emission scanning electron microscope (FESEM). It was observed that the as-prepared PANI films were highly porous, and showed a nano-sized rod-like or coralline-like morphology depending on the charge loading performed in the electropolymerization process. Furthermore, the PANI films were electrochemically measured by the galvanostatic charge–discharge (GCD), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) tests in 1 mol L?1 HClO4 solution. The results showed that such PANI films had a favorable electrochemical activity and an excellent capacitance. The rod-like PANI film prepared with the charge loading of 1000 mC showed the highest discharge capacitance of 569.1 F g?1 at a low current density of 1 A g?1. The discharge capacitance retained 97.7% after 1000 cycles at a large current density of 10 A g?1.  相似文献   

5.
《Synthetic Metals》2006,156(7-8):558-565
Polyaniline (PANI)-C60 membranes were chemically synthesized with fullerene C60 content of 0.2, 0.5, 1, 2 and 3 mol% (relative to aniline fragment) respectively, and then systematically characterized with FTIR, field emission scanning electron microscopy (FESEM), XPS and electrochemical impedance spectroscopy (EIS). It is demonstrated that electron/ion coupled transport across PANI-C60 membrane is possible in the presence of oxidizing agent at one side of the membrane and reducing agent at the other side. If 0.05 M acidic solution of FeCl3 was used as the oxidizing agent and 0.3 M ascorbic acid as the reducing agent, a typical value of transmembrane transport rate of redox equivalents was 3.1 × 10−8 mol s−1 cm−2 with the membrane containing 0.5% C60. This value was one order higher than that for HCl doped PANI membrane at identical conditions, which can be explained by superimposed C60 doping and acid doping. The 0.5% content of C60 is optimal and at higher content the rates of transmembrane redox transport decrease.  相似文献   

6.
Qi Qin  Jie Tao  Yan Yang 《Synthetic Metals》2010,160(11-12):1167-1172
Polyaniline (PANI) films were electrodeposited on stainless steel 304 (SS) from 0.5 M H2SO4 solution containing 0.3 M aniline by potentiostatic techniques to prepare a low cost and non-fragile counter electrode in dye-sensitized solar cell (DSSC). The compact layer, micro-particles, nanorods and fibrils were observed on the top of PANI films with different applied potentials (Eappl) by SEM. Then the conductivity and electrochemical test illuminated that a polyaniline film with the highest conductivity and best electrocatalytic activity for I3?/I? reaction was electrodeposited at 1.0 V Eappl. Finally, the photoelectric measurement showed that the energy conversion efficiency of DSSC with the PANI electrode was increased with the Eappl decreasing. And the efficiency of DSSC with PANI counter electrode at 1.0 V was higher than that with Pt electrode, owing to the loosely porous structure, high conductivity and excellent catalytic activity of PANI electrode.  相似文献   

7.
《Synthetic Metals》2006,156(7-8):610-613
Polypyrrole (PPy) nanowire modified electrodes were prepared electrochemically by template-free method based on graphite electrodes. The freshly prepared electrodes were dipped in 10% HClO4 solution at least 24 h for removal of carbonate ions. The modified electrodes toward ascorbic acid were characterized by potentiostatic method. The experiment's results show that the PPy modified electrodes have obvious electrocatalytic effect toward ascorbic acid oxidation. The oxidation current density has a good linearity in the concentration range of 5.0 × 10−4 and 2.0 × 10−2 mol L−1 of ascorbic acid. The determination sensitivity may be significantly affected by the thickness of PPy film and pH of the test solution. The method has promising application in determination of ascorbic acid in the real samples.  相似文献   

8.
《Acta Materialia》2007,55(18):6182-6191
High-temperature oxidation and hot corrosion behaviors of Cr2AlC were investigated at 800–1300 °C in air. Thermogravimetric–differential scanning calorimetric test revealed that the starting oxidation temperature for Cr2AlC is about 800 °C, which is 400 °C higher than other ternary transition metal aluminum carbides. Thermogravimetric analyses demonstrated that Cr2AlC displayed excellent high-temperature oxidation resistance with parabolic rate constants of 1.08 × 10−12 and 2.96 × 10−9 kg2 m−4 s−1 at 800 and 1300 °C, respectively. Moreover, Cr2AlC exhibited exceptionally good hot corrosion resistance against molten Na2SO4 salt. The mechanism of the excellent high-temperature corrosion resistance for Cr2AlC can be attributed to the formation of a protective Al2O3-rich scale during both the high-temperature oxidation and hot corrosion processes.  相似文献   

9.
《Synthetic Metals》2007,157(2-3):98-103
Polyaniline (PANI) was synthesized on titanium electrode from aqueous solution containing 0.3 mol L−1 aniline and 1 mol L−1 HNO3 by pulse potentiostatic method. The chronoamperogram during polymerization process of aniline was recorded. The effects of the synthesis parameters, such as anodic pulse duration (ta), cathodic pulse duration (tc), lower limit potential (Ec) and upper limit potential (Ea), on the morphology and electroactivity of the PANI films were investigated by scanning electron microscopy (SEM) and cyclic voltammetry (CV). SEM results present that flake, mica-like, quasi-fibrous and nano-fibrous PANI film could be synthesized with various polymerization parameters. Under the following conditions, ta = 0.8 s, tc = 0.1 s, Ec = 0 V and Ea = 1.0 V, high quality nano-fibrous PANI film with the best electroactivity was obtained. The CV results show that the PANI films with different morphologies, which were prepared under the same anodic polymerization charge, have obvious different characteristics. This means that the PANI films with different morphologies have different electrochemical activity.  相似文献   

10.
《Scripta materialia》2004,50(7):931-935
Superplasticity was investigated in friction stir processed A356 alloy at temperatures of 470–570 °C and initial strain rates of 3 × 10−4–1 × 10−1 s−1. Maximum superplastic elongation of 650% was obtained at 530 °C and an initial strain rate of 1 × 10−3 s−1 where a maximum strain rate sensitivity of 0.45 was observed.  相似文献   

11.
《Synthetic Metals》2005,155(3):648-651
The self-doping mechanism for charge transport is investigated in layer-by-layer (LBL) films from two conducting polymers, namely poly(o-methoxyaniline) (POMA) and poly(3-thiophene acetic acid) (PTAA). The efficiency of charge intercalation, defined as the ratio between the charge and the mass change, is twice for the POMA/PTAA LBL film in comparison with a cast POMA film. This is attributed to differences in the diffusion-controlled charge and mass transport, where distinct ionic species participate in the LBL films, as demonstrated with experiments using a quartz crystal microbalance. The doping efficiency for LBL film is the same, i.e., 3.93 × 10−4 and 3.56 × 10−4 g/C for the Li+ and (C2H5)4N+ doped films, and is different for the cast POMA film, i.e., 11.3 × 10−4 for Li+ and 6.45 × 10−4 g/C for (C2H5)4N+. Therefore, once no significant differences in the intercalation mechanism are observed when different cations, Li+ or (C2H5)4N+, are used with the LBL films, this indicates that the self-doping mechanism is controlled by the exchange of anions.  相似文献   

12.
《Intermetallics》2007,15(4):500-505
A Zr55.9Cu18.6Ta8Al7.5Ni10 bulk metallic glass (BMG) composite with an amorphous matrix reinforced by micro-scale particles of Ta-rich solid solution was prepared by copper-mold casting. Isothermal compression tests of the BMG composite were carried out in the range from glass transition temperature (∼673 K) to onset crystallization temperature (∼769 K) determined by differential scanning calorimetry (DSC). The compressive deformation behavior of the BMG composite in the supercooled region was investigated at strain rates ranging from 1 × 10−3 s−1 to 8 × 10−2 s−1. It was found that both the strain rate and test temperature significantly affect the stress–strain behavior of the BMG composite in the supercooled liquid region. The alloy exhibited Newtonian behavior at low strain rates but became non-Newtonian at high strain rates. The largest compressive strain of 0.8 was achieved at a strain rate of 1 × 10−3 s−1 at 713 K. The strain rate change method was employed to obtain the strain rate sensitivity (m). The deformation mechanism was discussed in terms of the transition state theory based on the free volume.  相似文献   

13.
During high-temperature compression tests on intermetallic Mo5SiB2, the dislocation microstructures vary with increasing temperature and strain rate. At 1400 °C, an increasing tendency exists for slip planes to be of an unexpected type (e.g., {143) and {523)) as a function of the decreasing strain rate and increasing strain that originates from a dislocation climb. As the temperature increases to 1600 °C, the internal strain rate of 6.07 × 10 3 s 1 from the dislocation climb at 4% strain exceeds the applied value of 1.67 × 10 3 s 1, and thus, the climb mainly controls the plastic strain, as evidenced by a strength that is lower than that at 1200 °C under the same conditions.  相似文献   

14.
《Synthetic Metals》2006,156(18-20):1236-1240
A new phthalocyanine, tetra-{4-[5-(4-tert-butyl-phenyl)-[1,3,4]oxadiazol-2-yl]-phenoxy}-zincphthalocyanine (TOPc) was synthesized and its Langmuir–Blodgett (LB) film was fabricated and characterized by ultraviolet–visible (UV–vis) absorption and polarized UV–vis absorption spectra. The results show that the tilt angle of TOPc molecules on substrate is about 32°. Field-effect transistor incorporating with LB film of TOPc as a semiconductor layer was fabricated. A mobility of 1.1 × 10−4 cm2 V−1 s−1 and an on/off ratio up to 103 have been achieved.  相似文献   

15.
A thin layer of Pd deposition on the surface significantly improves the corrosion resistance of 316L stainless steel in 0.5 mol L−1 H2SO4 + 2 ppm F solution at 80 °C. Compared with the air-formed passive film, the passive film formed in the stainless steel/Pd couple contains more Cr, Cr(OH)3 and Fe3O4 and less point defects, which provides better protection to the stainless steel substrate. The interfacial contact resistance of the stainless steel surface is also decreased. The Pd plated stainless steel is a potential material for bipolar plates in proton exchange membrane (PEM) fuel cells.  相似文献   

16.
《Synthetic Metals》2002,126(1):61-68
Electrochemical redox reactions of ferrous/ferric (Fe2+/Fe3+) and hydroquinone/quinone (H2Q/Q) were studied on Pt and polyaniline (PANI)-deposited Pt electrodes in 0.5 M H2SO4-supporting electrolyte by cyclic voltammetry and ac impedance spectroscopy. A comparison of the experimental data obtained with the Pt and PANI/Pt electrodes suggested that the reactions were catalyzed by the PANI. Based on a relative increase in peak currents of cyclic voltammograms, catalytic efficiency (γcv) of the PANI was defined. There was an increase in γcv with an increase of scan rate and a decrease of concentration of Fe2+/Fe3+ or H2Q. The complex plane impedance spectrum of the electrode consisted of a semicircle in high frequency range and a linear spike in low frequency range. The exchange current density (i0) calculated using the semicircle part of the impedance showed Butler–Volmer kinetics with respect to concentration dependence. From a relative increase of i0 on the PANI/Pt electrode, catalytic efficiency (γeis) was evaluated.  相似文献   

17.
《Synthetic Metals》2001,123(3):459-468
Polyaniline (PANI) was potentiodynamically deposited on stainless steel (SS), Ni, Ti, Al and Pb electrodes from aqueous solutions of NaClO4, oxalic acid and H2SO4 of different concentrations. Platinum was also used as a substrate for the purpose of comparison. Although, the non-platinum metals showed reactivity in the electrolytes, the adsorption of aniline monomer occurred leading to initiation and growth of PANI during repeated potential sweeps. The nature of voltammograms of the non-platinum metals during PANI deposition differed from that of the Pt electrode. Subsequent to potentiodynamic deposition, the electrodes were studied for their electrochemical activity in 0.5 M H2SO4 without and with dissolved redox species. On all metals, the PANI exhibited the potentiodynamic peak at about 0.2 V corresponding to transition from leucoemaraldine (LE) state to emeraldine (EM) state at low scan rates. However, this peak disappeared on repetition of potential scan and also at high scan rates. The PANI deposited on non-platinum metals showed response to dissolved redox species, viz. hydroquinone/quinone, ferrous/ferric, ferrocyanide/ferricyanide, as reflected in the potentiodynamic and ac impedance measurements. However, the peak potential separation of cyclic voltammograms was very large.  相似文献   

18.
《Acta Materialia》2007,55(8):2805-2814
An efficient numerical method was developed to extract the diffusion and electromigration parameters for multi-phase intermetallic compounds (IMC) formed as a result of material reactions between under bump metallization (UBM) and solder joints. This method was based on the simulated annealing (SA) method and applied to the growth of Cu–Sn IMC during thermal aging and under current stressing in Pb-free solder joints with Cu-UBM. At 150 °C, the diffusion coefficients of Cu were found to be 3.67 × 1017 m2 s−1 for Cu3Sn and 7.04 × 1016 m2 s−1 for Cu6Sn5, while the diffusion coefficients of Sn were found to be 2.35 × 1016 m2 s−1 for Cu3Sn and 6.49 × 1016 m2 s−1 for Cu6Sn5. The effective charges of Cu were found to be 26.5 for Cu3Sn and 26.0 for Cu6Sn5, and for Sn, the effective charges were found to be 23.6 for Cu3Sn and 36.0 for Cu6Sn5. The SA approach provided substantially superior efficiency and accuracy over the conventional grid heuristics and is particularly suitable for analyzing many-parameter, multi-phase intermetallic formation for solder systems where quantitative deduction for such parameters has seldom been reported.  相似文献   

19.
A mechanism of corrosion is proposed relating to a NiCoCrAlTaY coated Mar-M247 superalloy exposure in molten Na2SO4 salt vapour at 900 °C. The corrosion process indicates the parabolic “diffusion controlled” region I at rate of 4.6 × 10?6 mg2 cm?4 s?1, the combination of parabolic and linear “reaction–diffusion controlled” region II at rate of 2.28 × 10?5 mg2 cm?4 s?1 and 4.35 × 10?5 mg cm?2 s?1, and finally the complete “reaction controlled” region III at the same rate of 3.92 × 10?4 mg cm?2 s?1 as the uncoated superalloy. The corrosion kinetics of each region and of the whole process are formulated rationally associated with the corrosion mechanism.  相似文献   

20.
《Synthetic Metals》2004,144(2):133-142
Surface-enhanced Raman scattering (SERS) and cyclic voltammetry (CV) were used to investigate oxidation–reduction processes of single-wall carbon nanotube (SWNT) films deposited on Au supports in 0.5 M H2SO4 solutions. In the potential range (0; +1000) and (0; +1500) mV versus saturated calomel electrode (SCE), the oxidation–reduction reactions of SWNT films are quasi-reversible and irreversible, respectively. Anodic polarization of SWNT films until +1000 mV versus SCE produced compounds similar to the bisulfate intercalated graphite. Regardless of excitation wavelength, i.e. 1064 or 676.4 nm, variation in the Raman spectra exhibited a decrease in the intensity of the bands associated with the radial breathing mode (RBM) situated in the 120–240 cm−1 spectral range. Also an increase in the intensity of the D band is accompanied an up-shift of this band. A gradual decrease of the Breit–Wigner–Fano component was observed at λexc=676.4 nm. Partial restoration of the Raman spectra was achieved by a subsequent alkaline solution treatment. Potentials higher than +1000 mV versus SCE resulted in SWNTs breakage and fragments of different length were formed such as closed-shell fullerene. This was observed in the SERS spectrum by: (i) the disappearance of the RBM band, (ii) the increased D-band shifted to ca. 1330 cm−1 and (iii) the appearance of a new band at 1494 cm−1, frequently observed also in the Raman spectrum of fullerenes on the type C70, C84, C119, as well as in its derivative compounds (e.g. C60O, clathrates, etc.). Appearance and increase in the intensity of the Raman band at 1494 cm−1 as result of an anodic polarization of the SWNT film in solution of H2SO4 0.5 M in 1-butanol is a further evidence of the nanotubes breakage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号