首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We developed surface modification tools for the fabrication of a bioelectronic device which consists of a myoglobin monolayer self-assembled on an 11-MUA layer. To utilize a single protein as the active element, it was necessary to reduce protein aggregation on the protein layer in the nanobio electronic device, which was developed in our previous study and shown to display basic biomemory functions. Here, the reduction of myoglobin aggregation was accomplished by using 3-(3-cholamidopropyl) dimethylammonio-11-propanesulfonate (CHAPS) to fabricate a well-defined protein layer on the bioelectronic device. We investigated two different surface modification methods for making well oriented biofilm. The effects of CHAPS on the formation of a myoglobin layer self-assembled on an 11-MUA layer were examined by atomic force microscopy and Raman spectroscopy. The size of the myoglobin aggregates was reduced from 200-250 nm to 10-40 nm depending on treatment method. The sustaining redox property of the CHAPS treated myoglobin layer was examined using cyclic voltammetry. Using these techniques, we found that after surfactant CHAPS treatment, protein aggregation was dramatically reduced and the protein layer still maintained its inherent electrochemical properties.  相似文献   

2.
In this study, our goal was to produce a self-assembled layer on a gold electrode that would enable the capture of antibodies orientated for maximum binding to their specific antigen in an immunosensor. To achieve this, the amine groups from lysine residues in protein G were initially converted to thiol groups with 2-iminothiolane. The high affinity of thiols for a gold surface facilitates the direct formation of a self-assembled protein G layer. Following this, the coated gold electrode was exposed to a solution of capture antibody (mAb1) so that these antibodies could attach to the protein G layer through their nonantigenic regions, leaving antigen binding sites available with minimal steric hindrance for binding of target analyte. A comparative study between this method and the more conventional strategy of covalently attaching a layer of nonthiolated protein G on an alkanethiol self-assembled monolayer-coated gold electrode has been performed. Based on a reduced preparation time, and an enhanced capacity for immobilized capture antibody to bind its target analyte due to a more favorable orientation, the layer of thiolated protein G was found to be a more suitable backbone for an electrochemical immunosensor.  相似文献   

3.
Low density lipoprotein (LDL) cholesterol is a major ingredient of the plaque that collects in the coronary arteries and causes coronary heart diseases. Among the methods used for the extracorporeal elimination of LDL from intravasal volume, immunoaffinity technique using anti-LDL antibody as a ligand offers superior selectivity and specificity. Proper orientation of the immobilized antibody is the main issue in immunoaffinity techniques. In this study, anti-human β-lipoprotein antibody (anti-LDL antibody) molecules were immobilized and oriented through protein A onto poly(2-hydroxyethyl methacrylate) (PHEMA) cryogel in order to remove LDL from hypercholesterolemic human plasma. PHEMA cryogel was prepared by free radical polymerization initiated with N,N,N′,N′-tetramethylene diamine (TEMED). PHEMA cryogel with a swelling degree of 8.89 g H2O/g and 67% macro-porosity was characterized by swelling studies, scanning electron microscope (SEM) and blood compatibility tests. All the clotting times were increased when compared with control plasma. The maximum immobilized anti-LDL antibody amount was 63.2 mg/g in the case of random antibody immobilization and 19.6 mg/g in the case of oriented antibody immobilization (protein A loading was 57.0 mg/g). Random and oriented anti-LDL antibody immobilized PHEMA cryogels adsorbed 111 and 129 mg LDL/g cryogel from hypercholesterolemic human plasma, respectively. Up to 80% of the adsorbed LDL was desorbed. The adsorption–desorption cycle was repeated 6 times using the same cryogel. There was no significant loss of LDL adsorption capacity.  相似文献   

4.
《IEEE sensors journal》2006,6(5):1052-1056
This paper evaluated immobilization of anti-C-reactive protein (CRP) monoclonal antibody on a quartz crystal microbalance (QCM) when 2-aminoethanethiol (AET), 4,4'-dithiodibutyric acid (DDA), and 11-mercaptoundecanoic acid (MUA) were deposited on the gold surface of QCM. In all monolayers, anti-CRP antibodies were immobilized such as Langmuir types because it had been introduced with a corresponding active group. According to the Langmuir isotherm equation$a_max$, the maximum immobilized amounts of anti-CRP antibody were 4.27, 2.72, and 3.74$hboxpmol/hboxcm^2$, respectively. Although the immobilized amount of anti-CRP antibody was highest on the AET monolayer, the amount of antigen–antibody binding between the anti-CRP antibody and the CRP was highest on the MUA monolayer. CRP was detected from negative to positive levels when the calibration curve was achieved using MUA monolayer.  相似文献   

5.
A combination of in situ and ex situ surface plasmon resonance (SPR) imaging experiments is used to characterize the differential electrostatic adsorption of proteins and synthetic polypeptides onto photopatterned monolayers at gold surfaces. The nonspecific electrostatic adsorption of proteins onto negatively charged self-assembled monolayers (SAMs) of 11-mercaptoundecanoic acid (MUA) is found to depend on the protein pI, solution ionic strength, and solution pH. The pH dependence of the electrostatic adsorption of the protein avidin onto a MUA SAM indicates that a full monolayer adsorbs at a solution pH greater than 5.0, and an "effective pK(a)" of 3.6 is determined for the avidin adsorption. This effective pK(a) is a combination of the pK(a) of the MUA monolayer and the ion pairing adsorption coefficient for the avidin. Additional SPR imaging experiments show that the electrostatic adsorption of the synthetic polypeptide poly-l-lysine (PL) onto a MUA SAM varies with molecular weight, forming a full PL monolayer for polypeptides with more than 67 lysine residues.  相似文献   

6.
Biotinylated heparin has been immobilized onto self-assembled monolayer of 4-aminothiophenol using avidin–biotin specific binding. The modified electrodes have been characterized using surface plasmon resonance technique (SPR), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), atomic force microscopy (AFM) and contact angle (CA) measurements. The interaction of immobilized biotinylated heparin with low density lipoprotein (LDL) has been studied using surface plasmon resonance technique. The biotinylated heparin modified electrode can be used to detect LDL in the range of 20 to 100 mg/dl with the sensitivity of 513.3 m°/μM.  相似文献   

7.
Hong MY  Lee D  Kim HS 《Analytical chemistry》2005,77(22):7326-7334
The interaction of streptavidin (SA) with a biotinylated surface has been of great interest in the development of an interfacial layer for protein immobilization based on self-assembled monolayers (SAMs) and polymeric layers. Here, we demonstrate the unique characteristics of protein-ligand interactions on dendrimer monolayers based on kinetic and equilibrium binding analyses. With amine-ended poly(amidoamine) dendrimers from the first (G1) to fourth (G4) generation, the formation of even, compact dendrimer monolayers on gold was confirmed using FT-IR spectroscopy and ellipsometry. For the SA-biotin interaction, quantitative analysis of bound SA using surface plasmon resonance showed that the saturation binding level of SA was fairly higher in all dendrimer layers when compared to other tested systems of 11-mercaptoundecylamine SAMs and a poly(L-lysine) layer. Kinetic studies revealed that the initial binding rate of SA up to the saturation level was 2-fold higher in all dendrimer layers than in the SAMs regardless of the surface density of functionalized biotin. Concurrently, the dendrimer layers led to much higher values of sticking probability, which is defined as the probability that the SA molecule adsorbs upon collision with a biotinylated surface, at a fixed SA coverage, and prolonged the significant levels around the maximum probability with increasing SA coverage. Plots of the saturation coverage of SA versus the SA concentration in solution showed that SA binding onto the biotinylated G1 and G3 layers fit to a Langmuir isotherm model. Taken together, faster binding of SA and highly ordered packing of the molecules seems to be achieved through typical properties of the dendrimer monolayers such as surface distribution of functionalized biotin, surface corrugation, and flexibility of highly branched larger dendrimers, which provides a guideline for the construction and analysis of an interfacial layer in biosensing applications.  相似文献   

8.
Using A10B single-chain fragment variable (scFv) as a model system, we demonstrated that the flexibility of scFv linker engineering can be combined with the inherent quick and adaptable characters of surface coupling chemistry (e.g., electrostatic, hydrogen bonding, or covalent attachment) to attach scFv to preformed functionalized self-assembled monolayers (SAMs). Six arginines, which were separated by glycine or serine as spacer, were incorporated in the peptide linker to form a 15-mer peptide linker (RGRGRGRGRSRGGGS). The polycationic arginine peptide was engineered into the A10B scFv-RG3 to favor its adsorption at anionic charged template surface (11-mercaptoundecanoic acid (MUA) and poly(sodium 4-styrenesulfonate (PSS))). This new approach was compared with the other engineered scFv constructs. Our results demonstrated that the anionic charged SAM template facilitated the oriented immobilization of scFvs on the SAM template surface as well as reduced the possibility of protein denaturation when directly immobilized on the solid surface. A 42-fold improvement of detection limits using MUA/A10B scFv-RG3 (less than 0.2 nM experimentally determined) was achieved compared to A10B Fab antibody and a 5-fold improvement was observed compared to A10B scFv that was engineered with a cysteine in the linker sequence. Using protein A-coated gold nanoparticles, a picomolar experimental detection limit was achieved. With 20 amino acids to choose from, engineered recombinant scFv in combination with SAM technology and nanoparticle mass amplification provide an emerging strategy for the development of highly sensitive and specific scFv immunosensors.  相似文献   

9.
Bae YM  Oh BK  Lee W  Lee WH  Choi JW 《Analytical chemistry》2004,76(6):1799-1803
An immunosensor for the detection of pathogens was developed using imaging ellipsometry (IE) as a detection method. Yersinia enterocolitica was selected as the target pathogen in this study. A gold surface deposited with a self-assembled layer of 11-mercaptoundecanoic acid (11-MUA) was used as a substrate. For the fabrication of the immunosensor, protein G spots were made on the substrate using an inkjet-type microarrayer, and monoclonal antibody (Mab) was adsorbed onto the protein G spots. Deposition of each layer onto the substrate was confirmed by the measurement of surface plasmon resonance. The ellipsometric image of the protein G spot and the Mab-adsorbed protein G spot were acquired using an off-null ellipsometry type of imaging ellipsometry system. By measuring the ellipsometric angles of the protein layers, the surface concentration of each protein layer was calculated. The change in the mean optical intensity of the protein spot to the various concentrations of Y.enterocolitica was estimated. The immunosensor using imaging ellipsometry could successfully detect Y. enterocolitica in concentrations varying from 10(3) to 10(7) cfu/mL. The proposed immunosensor system has the advantage of allowing label-free detection, high sensitivity, and operational simplicity.  相似文献   

10.
We present two strategies for microspotting 10 x 12 arrays of double-stranded DNAs (dsDNAs) onto a gold-coated glass slide for high-throughput studies of protein-DNA interactions by surface plasmon resonance (SPR) microscopy. Both methods use streptavidin (SA) as a linker layer between a biotin-containing mixed self-assembled monolayer (SAM) and biotinylated dsDNAs to produce arrays with high packing density. The primary mixed SAM is produced from biotin- and oligo(ethylene glycol)-terminated thiols bonded as thiolates onto the gold surface. In the first method, a robotic microspotter is used to deliver nanoliter droplets of dsDNA solution onto a uniform layer of this SA ( approximately 2 x 10(12) SA/cm(2)). SPR microscopy shows a density of (5-6) x 10(11) dsDNA/cm(2) (0.2-0.3 dsDNA/SA) in the array elements. The second method uses instead a microspotted array of this SA linker layer, onto which the microspots of dsDNA are added with spatial registry. SPR microscopy before addition of the dsDNA shows a SA coverage of 2 x 10(12) SA/cm(2) within the spots and a dsDNA density of 8.5 +/- 3.5 x 10(11) dsDNA/cm(2) (0.3-0.7 dsDNA/SA, depending on the length of dsDNA) after dsDNA spotting. We demonstrate the ability to simultaneously monitor protein binding with the SPR microscope in many 200-microm spots with 1-s time resolution and sensitivity to <1 pg of protein.  相似文献   

11.
The density of surface-immobilized ligands or binding sites is an important issue for the development of sensors, array- or chip-based assays, and single-molecule detection methods. The goal of this research is to control the binding site density of reactive ligands on surfaces by diluting surface amine groups in self-assembled and cross-linked monolayers on glass prepared from solutions containing very low concentrations of (3-aminopropyl)triethoxysilane (APTES) and much higher concentrations of (2-cyanoethyl)triethoxysilane. The surface amine sites are suitable for attaching labels and ligands by reaction with succinimidyl ester reagents. Labeling the amine sites with fluorescent molecules and imaging the single molecules with fluorescence microscopy provides a means of determining the density of amine sites on the surface, which were incorporated into the self-assembled monolayer with micrometer spacings in proportion to the concentration of APTES in the synthesis. Biotin ligands were also bound to these surface amine sites using a succinimidyl ester linker, and the immobilized biotin was then reacted with either streptavidin-conjugated gold colloid particles or fluorescently labeled neutravidin. Imaging of these samples yields consistent amine and biotin site coverages, indicating that quantitative control and chemical conversion of binding sites can be achieved at very low (<10(-7)) fractions of a monolayer.  相似文献   

12.
Peptides that specifically bind to polyetherimide (PEI) were selected, characterized, and used for the noncovalent modification of the PEI surface. The peptides were successfully identified from a phage-displayed peptide library. A chemically-synthesized peptide composed of the Thr-Gly-Ala-Asp-Leu-Asn-Thr sequence showed an extremely high binding constant for the PEI films (5.6 × 10(8) M(-1)), which was more than three orders of magnitude greater than that for the reference polystyrene films. The peptide was biotinylated and immobilized onto the PEI films to further immobilize streptavidin (SAv). The amount of SAv bound depended on the density of immobilized peptide. It gradually increased with an increasing density of immobilized peptide and achieved a maximum (2.1 pmol cm(-2)) at a peptide density of 19.8 pmol cm(-2). The ratio of peptide used for immobilizing SAv at the maximum value was only 11%, and was partially due to the low accessibility of SAv to the biotin moieties on the PEI films. Moreover, the amount of SAv bound gradually decreased at higher peptide densities, suggesting that the clustering of the peptides also inhibited the binding of SAv. Furthermore, peptides on the PEI films promoted the uniform immobilization of SAv with less structural denaturing. The immobilized SAv was able to further immobilize probe DNA to hybridize with its complementary DNA. These present results suggest that the density of immobilized peptide has a great impact on the surface modifications using polymer-binding peptides.  相似文献   

13.
Label-free electrochemical detection for aptamer-based array electrodes   总被引:9,自引:0,他引:9  
Xu D  Xu D  Yu X  Liu Z  He W  Ma Z 《Analytical chemistry》2005,77(16):5107-5113
An electrochemical impedance spectroscopy method of detection for aptamer-based array electrodes is reported in which the binding of aptamers immobilized on gold electrodes leads to impedance changes associated with target protein binding events. Human IgE was used as a model target protein and incubated with the aptamer-based array consisting of single-stranded DNA containing a hairpin loop. To increase the binding efficiency for proteins, a hybrid modified layer containing aptamers and cysteamine was fabricated on the photolithographic gold surface through molecular self-assembly. Atomic force microscopy analysis demonstrated that human IgE could be specifically captured by the aptamer and stand well above the self-assembled monolayer (SAM) surface. Compared to immunosensing methods using anti-human IgE antibody as the recognition element, impedance spectroscopy detection could provide higher sensitivity and better selectivity for aptamer-modified electrodes. The results of this method show good correlation for human IgE in the range of 2.5-100 nM. A detection limit of 0.1 nM (5 fmol in a 50-microL sample) was obtained, and an average of the relative standard deviation was <10%. The method herein describes the first label-free detection for arrayed electrodes utilizing electrochemical impedance spectroscopy.  相似文献   

14.
The segregation ability of 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate (CHAPS), a zwitterionic surfactant, on cytochrome c (cyt c) aggregates in a phosphate buffer solution was quantified through the dynamic light-scattering analysis, and CHAPS was found to have an excellent ability in reducing nonspecific affinity among cyt c molecules. When CHAPS was applied to cyt c aggregates on the surface of gold substrates modified with self-assembled cyt c monolayer, the aggregates were found to be successfully eliminated by high-resolution atomic force microscopy image with 30-nm-sized cyt c clusters. This technique is expected to be useful to prepare a self-assembled monolayer of metalloproteins without their aggregates which may degrade the electrochemical property required as a biomolecular electronic device.  相似文献   

15.
Gaus K  Hall EA 《Analytical chemistry》1999,71(13):2459-2467
Management of atherosclerosis is a high priority target. If this is to be achieved, the early detection of risk and risk factors are paramount and integrated with this is a need for the detection of the oxidation state of a patient's low density lipoprotein (LDL). Presently no readily usable technique exists for their rapid determination and in order to develop such a technique a monitoring system must be devised which distinguishes a parameter which changes on oxidation and distinguishes critical and noncritical oxidation products. The strategy which is investigated here is based on the use of a heparin-modified Au-surface plasmon resonance (SPR) device as a modulator of LDL binding, according to its oxidation state. Heparin is strongly negatively charged and seven binding sites for heparin have been identified on the LDL apoprotein consisting of arginine and lysine clusters; these are regarded as identical to the LDL receptor binding sites. The heparin-modified surface was calibrated for LDL and a calibration factor of 1.84 × 10(9) particles mm(-)(2) Δ(o)(-)(1) SPR and instrumental resolution of 9 × 10(6) particles mm(-)(2) obtained which gives sufficient scope to distinguish LDL dependent binding. LDL oxidation could involve the protein and/or lipoprotein, the latter being of interest for athersclerosis risk and the LDL binding to heparin was shown to decrease with degree of protein oxidation as determined by the free amino groups (fluorescamine assay), but was not influenced by lipid oxidation (determined by thiobarbituric acid reactive substances assay, TBARS). The SPR based assay was tested for LDL in plasma and the calibration found to follow that obtained in buffer, although the scatter was higher, probably due to interference from other plasma species. Nevertheless, in the context of the normal distribution of LDL in healthy patients, the assay would almost certainly be able to determine Ox-LDL in atherosclerotic patients.  相似文献   

16.
Co‐adsorption kinetics of human low density lipoprotein (LDL) and serum albumin (HSA) on hydrophilic/hydrophobic gradient silica surface were studied using Total Internal Reflection Fluorescence (TIRF) and autoradiography. Two experimental systems were examined: (1) fluorescein‐labeled LDL (FITC‐LDL) adsorption from a FITC‐LDL + HSA solution mixture onto the octadecyldimethylsilyl (C18)‐silica gradient surface, and (2) the FITC‐LDL adsorption onto the HSA pre‐adsorbed on the C18‐silica gradient surface. Experiments with fluorescein‐labeled albumin (FITC‐HSA) and unlabeled LDL have been performed in parallel. The adsorption kinetics of FITC‐LDL onto the hydrophilic silica was found to be transport‐limited and not affected by co‐adsorption of HSA. A slower adsorption kinetics of lipoprotein onto the silica with pre‐adsorbed HSA layer resulted from a slow appearance of LDL binding sites exposed by the process of HSA desorption. In the region of increasing surface density of C18 groups, the FITC‐LDL adsorption rate fell below the transport‐limited adsorption rate, except in the very early adsorption times. Pre‐adsorption of HSA onto the C18‐silica gradient region resulted in a significant decrease of both the FITC‐LDL adsorption rate and adsorbed amount. The lowest FITC‐LDL adsorption was found in the region of C18 self‐assembled monolayer, where the pre‐adsorbed HSA layer almost completely eliminated lipoprotein binding.  相似文献   

17.
Methyl- and carboxy-terminated self-assembled monolayers (SAMs) were custom-patterned on porous gold substrates with equipment commonly used to print protein arrays, without complex surface chemistry protocols. Proteins were covalently immobilized on hydrophilic carboxy-terminated SAM spots, while the remainder of the surface was superhydrophobic due to the roughened gold surface and the methyl-terminated SAM. The resistance of these patterns to biofouling and the effective containment of MALDI matrix solution within the hydrophilic spot made these surfaces amenable to analyzing protein-peptide binding with mass spectrometry. A model system of the affinity peptides HA, cmyc, and V5 and their corresponding antibodies was used to demonstrate the utility of the patterned porous gold. Mass spectrometry (MS) and tandem mass spectrometry (MS/MS) matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) spectra and images obtained reflected the effective capture of the affinity peptides directly from spiked bovine plasma.  相似文献   

18.
At the cellular level, a small number of protein molecules (receptors) can induce significant cellular responses, emphasizing the importance of molecular detection of trace amounts of protein on single living cells. In this study, we designed and synthesized silver nanoparticle biosensors (AgMMUA-IgG) by functionalizing 11.6 +/- 3.5-nm Ag nanoparticles with a mixed monolayer of 11-mercaptoundecanoic acid (MUA) and 6-mercapto-1-hexanol (1:3 mole ratio) and covalently conjugating IgG with MUA on the nanoparticle surface. We found that the nanoparticle biosensors preserve their biological activity and photostability and can be utilized to quantitatively detect individual receptor molecules (T-ZZ), map the distribution of receptors (0.21-0.37 molecule/microm(2)), and measure their binding affinity and kinetics at concentrations below their dissociation constant on single living cells in real time over hours. The dynamic range of detection is 0-50 molecules per cell. We also found that the binding rate (2-27 molecules/min) is highly dependent upon the coverage of receptors on living cells and their ligand concentration. The binding association and dissociation rate constants and affinity constant are k1 = (9.0 +/- 2.6) x 10(3) M(-1) s(-1), k(-1) = (3.0 +/- 0.4) x 10(-4) s(-1), and KB = (4.3 +/- 1.1) x 10(7) M(-1), respectively.  相似文献   

19.
Huang CJ  Li Y  Jiang S 《Analytical chemistry》2012,84(7):3440-3445
High resistance to nonspecific adsorption typically accompanies loss of binding capacity and vice versa for many surface coatings and applications. In this study, a zwitterionic polycarboxybetaine acrylamide (pCB)-based binding platform with a "two-layer" structure for ultra low fouling and high protein loading properties was developed. The first pCB layer with a high packing density prepared under a water-free condition serves as a protective layer to resist nonspecific adsorption from complex media. The second pCB layer with a low packing density is used to achieve high protein binding capacity. Amounts of tetraethylthiuram disulfide (TED) and water in the reaction were varied to regulate the packing density and chain length of polymers, respectively, for the second pCB layer. The in situ modification of pCB films with antihuman thyroid stimulating hormone (TSH) IgG molecules and the detection of TSH antigens were employed to demonstrate high protein immobilization and high antigen detection capabilities of this "two-layer" structure. Undiluted blood plasma was used to test the nonfouling properties of this platform. Nonspecific and specific interactions were monitored by a surface plasmon resonance sensor. This work demonstrates great promise of this "two-layer" binding platform for the improved performance of biosensors.  相似文献   

20.
We report a protein immobilized self-assembled monolayer (SAM) of gold nanoparticles (GNPs) on indium-tin-oxide (ITO) coated glass plate. The protein-antibody, Mb-Ab, was covalently immobilized over the self-assembly of GNPs through a mixed SAM of 11-mercapto undecanoic acid (MUA) and 3-mercapto propionic acid (MPA) via carbodiimide coupling reaction using N-(3-dimethylaminopropyl)-N′-ethyl carbodiimide (EDC) and N-hydroxy succinimide (NHS). The whole assembly was constructed on 0.25 cm2 area of ITO-glass plate (Mb-Ab/MUA-MPA/GNPs/APTES/ITO-glass) and an impedimetric study was carried out for its application in myoglobin detection. This prototype assembly was characterized by scanning electron microscopy, atomic force microscopy and electrochemical techniques. The modified electrode showed an increased electron-transfer resistance on coupling with protein antigen, Mb-Ag, in the presence of a redox probe [Fe(CN)6]3−/4−. Its exhibits an electrochemical impedance response to protein myoglobin-antigen, Mb-Ag, concentration in a linear range from 0.01 μg to 1.65 μg mL−1 with a lowest detection limit of 1.4 ng mL−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号