首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Four ruminally lactating Holstein cows averaging 602 ± 25 kg of body weight and 64 ± 6 d in milk at the beginning of the experiment were randomly assigned to a 4 × 4 Latin square design to determine the effects of feeding whole flaxseed and calcium salts of flaxseed oil on dry matter intake, digestibility, ruminal fermentation, milk production and composition, and milk fatty acid profile. The treatments were a control with no flaxseed products (CON) or a diet (on a dry matter basis) of 4.2% whole flaxseed (FLA), 1.9% calcium salts of flaxseed oil (SAL), or 2.3% whole flaxseed and 0.8% calcium salts of flaxseed oil (MIX). The 4 isonitrogenous and isoenergetic diets were fed for ad libitum intake. Experimental periods consisted of 21 d of diet adaptation and 7 d of data collection and sampling. Dry matter intake, digestibility, milk production, and milk concentrations of protein, lactose, urea N, and total solids did not differ among treatments. Ruminal pH was reduced for cows fed the CON diet compared with those fed the SAL diet. Propionate proportion was higher in ruminal fluid of cows fed CON than in that of those fed SAL, and cows fed the SAL and CON diets had ruminal propionate concentrations similar to those of cows fed the FLA and MIX diets. Butyrate concentration was numerically higher for cows fed the SAL diet compared with those fed the FLA diet. Milk fat concentration was lower for cows fed SAL than for those fed CON, and there was no difference between cows fed CON and those fed FLA and MIX. Milk yields of protein, fat, lactose, and total solids were similar among treatments. Concentrations of cis-9 18:1 and of intermediates of ruminal biohydrogenation of fatty acids such as trans-9 18:1 were higher in milk fat of cows fed SAL and MIX than for those fed the CON diet. Concentration of rumenic acid (cis-9, trans-11 18:2) in milk fat was increased by 63% when feeding SAL compared with FLA. Concentration of α-linolenic acid was higher in milk fat of cows fed SAL and MIX than in milk of cows fed CON (75 and 61%, respectively), whereas there was no difference between FLA and CON. Flaxseed products (FLA, SAL, and MIX diets) decreased the n-6 to n-3 fatty acid ratio in milk fat. Results confirm that flax products supplying 0.7 to 1.4% supplemental fat in the diet can slightly improve the nutritive value of milk fat for better human health.  相似文献   

2.
This study aimed to evaluate the effects of length of chop of corn silage and forage:concentrate ratio (F:C) on performance and milk fatty acid profiles in dairy cows supplemented with flaxseed. Our hypothesis was that decreasing forage particle length and F:C ratio would increase unsaturated fatty acid flow to the small intestine and subsequent transfer of these unsaturated fatty acids into milk. Eight Holstein cows (648.1 ± 71.5 kg body weight; 109.6 ± 43.6 days in milk) were used in a replicated 4 × 4 Latin square design with 21-d periods and a 2 × 2 factorial arrangement of dietary treatments. Dietary factors were: 1) F:C ratios (dry matter basis) of 55:45 and 45:55; and 2) corn silage particle lengths of 9.52 and 19.05 mm. All experimental cows received 1 kg of flaxseed to substitute for 1 kg of a rolled barley grain-based concentrate daily. Diets were fed twice daily as a total mixed ration. Corn silage particle length and F:C ratio had no effect on dry matter intake, milk yield, and milk composition; however, feeding short cut corn silage depressed milk protein yield. Significant particle size × F:C ratio interactions were observed for milk fat proportions of C16:0, C18:1cis-9, and C18:2cis-9, trans-11 (a conjugated linoleic acid isomer). At short corn silage particle size, decreasing F:C ratio depressed milk fat proportion of C16:0. Conversely, feeding short corn silage at high F:C ratio increased the proportion of C18:1cis-9 and C18:2cis-9, trans-11 in milk fat. The milk fat proportion of C18:2trans-10, cis-12, a conjugated linoleic acid isomer that is associated with milk fat depression, was not affected by dietary treatment. Our results show that corn silage particle length and F:C ratio influence milk fatty acid profiles in dairy cows fed supplemental flaxseed as a source of polyunsaturated fatty acids.  相似文献   

3.
Flaxseed supplementation improves fatty acid profile of cow milk   总被引:2,自引:0,他引:2  
The objective of the study was to determine the effects of adding flaxseed or fish oil to the diet on the milk fatty acid profile of cows. The experiment was conducted in the summer of 2006 and involved 24 Friesian cows that were divided into 3 groups of 8 animals according to different type of fat supplementation: a traditional diet with no fat supplementation, a diet supplemented with whole flaxseed, and a diet supplemented with fish oil. Results suggested that whole flaxseed supplementation positively affects the milk fatty acid profile during summer. In particular, milk from cows receiving flaxseed supplementation showed a decrease in saturated fatty acid, an increase in monounsaturated fatty acid, and, together with the milk from fish oil-supplemented cows, an increase in polyunsaturated fatty acid content compared with milk from control cows. As expected, both fish oil and flaxseed supplementation increased the content of n-3 polyunsaturated fatty acids in milk fat. The increased dietary intake of C18:3 in flaxseed-supplemented cows resulted in increased levels of milk C18:1 trans-11 and increased conjugated linoleic acid C18:2 cis-9,trans-11 by Δ9-desaturase activity. Milk from flaxseed-supplemented cows together with the high conjugated linoleic acid content was characterized by low atherogenic and thrombogenic indices, suggesting that its use has less detrimental effects concerning the atherosclerosis and coronary thrombosis risk associated with the consumption of milk and dairy products. In conclusion, flaxseed supplementation improves composition and nutritional properties of milk from cows milked during times of high ambient temperature.  相似文献   

4.
Sixteen Holsteins cows were used in a Latin square design experiment to determine the effects of extruded flaxseed (EF) supplementation and grain source (i.e., corn vs. barley) on performance of dairy cows. Extruded flaxseed diets contained 10% [dry matter (DM) basis] of an EF product that consisted of 75% flaxseed and 25% ground alfalfa meal. Four lactating Holsteins cows fitted with rumen fistulas were used to determine the effects of dietary treatments on ruminal fermentation. Intakes of DM (23.2 vs. 22.2 kg/d), crude protein (4.2 vs. 4.0 kg/d), and neutral detergent fiber (8.3 vs. 7.9 kg/d) were greater for cows fed EF diets than for cows fed diets without EF. Milk yield and composition were not affected by dietary treatments. However, 4% fat-corrected milk (30.5% vs. 29.6 kg/d) and solids-corrected milk (30.7 vs. 29.9 kg/d) were increased by EF supplementation. Ruminal pH and total volatile fatty acid concentration were not influenced by EF supplementation. However, feeding barley relative to corn increased molar proportions of acetate and butyrate and decreased that of propionate. Ruminal NH3-N was lower for cows fed barley than for cows fed corn. Milk fatty acid composition was altered by both grain source and EF supplementation. Cows fed EF produced milk with higher polyunsaturated and lower saturated fatty acid concentrations than cows fed diets without EF. Feeding EF or corn increased the milk concentration of C18:0, whereas that of C16:0 was decreased by EF supplementation only. Extruded flaxseed supplementation increased milk fat α-linolenic acid content by 60% and conjugated linoleic acid content by 29%. Feeding corn relative to barley increased milk conjugated linoleic acid by 29% but had no effect on milk α-linolenic concentration. Differences in animal performance and milk fatty acid composition were mainly due to EF supplementation, whereas differences in ruminal fermentation were mostly due to grain source.  相似文献   

5.
Sugar supplementation can stimulate rumen microbial growth and possibly fiber digestibility; however, excess ruminal carbohydrate availability relative to rumen-degradable protein (RDP) can promote energy spilling by microbes, decrease rumen pH, or depress fiber digestibility. Both RDP supply and rumen pH might be altered by forage source and monensin. Therefore, the objective of this study was to evaluate interactions of a sugar source (molasses) with monensin and 2 forage sources on rumen fermentation, total tract digestibility, and production and fatty acid composition of milk. Seven ruminally cannulated lactating Holstein cows were used in a 5 × 7 incomplete Latin square design with five 28-d periods. Four corn silage diets consisted of 1) control (C), 2) 2.6% molasses (M), 3) 2.6% molasses plus 0.45% urea (MU), or 4) 2.6% molasses plus 0.45% urea plus monensin sodium (Rumensin, at the intermediate dosage from the label, 16 g/909 kg of dry matter; MUR). Three chopped alfalfa hay diets consisted of 1) control (C), 2) 2.6% molasses (M), or 3) 2.6% molasses plus Rumensin (MR). Urea was added to corn silage diets to provide RDP comparable to alfalfa hay diets with no urea. Corn silage C and M diets were balanced to have 16.2% crude protein; and the remaining diets, 17.2% crude protein. Dry matter intake was not affected by treatment, but there was a trend for lower milk production in alfalfa hay diets compared with corn silage diets. Despite increased total volatile fatty acid and acetate concentrations in the rumen, total tract organic matter digestibility was lower for alfalfa hay-fed cows. Rumensin did not affect volatile fatty acid concentrations but decreased milk fat from 3.22 to 2.72% in corn silage diets but less in alfalfa hay diets. Medium-chain milk fatty acids (% of total fat) were lower for alfalfa hay compared with corn silage diets, and short-chain milk fatty acids tended to decrease when Rumensin was added. In whole rumen contents, concentrations of trans-10, cis-12 C18:2 were increased when cows were fed corn silage diets. Rumensin had no effect on conjugated linoleic acid isomers in either milk or rumen contents but tended to increase the concentration of trans-10 C18:1 in rumen samples. Molasses with urea increased ruminal NH3-N and milk urea N when cows were fed corn silage diets (6.8 vs. 11.3 and 7.6 vs. 12.0 mg/dL for M vs. MU, respectively). Based on ruminal fermentation characteristics and fatty acid isomers in milk, molasses did not appear to promote ruminal acidosis or milk fat depression. However, combinations of Rumensin with corn silage-based diets already containing molasses and with a relatively high nonfiber carbohydrate:forage neutral detergent fiber ratio influenced biohydrogenation characteristics that are indicators of increased risk for milk fat depression.  相似文献   

6.
The objective of this study was to determine the long-term effect on milk conjugated linoleic acid (cis-9, trans-11 CLA) of adding fish oil (FO) and sunflower oil (SFO) to the diets of partially grazing dairy cows. Fourteen Holstein cows were divided into 2 groups (7 cows/treatment) and fed either a control or oil-supplemented diet for 8 wk while partially grazing pasture. Cows in group 1 were fed a grain mix diet (8.0 kg/d, DM basis) containing 400 g of saturated animal fat (control). Cows in the second group were fed the same grain mix diet except the saturated animal fat was replaced with 100 g of FO and 300 g of SFO. Cows were milked twice a day and milk samples were collected weekly throughout the trial. Both groups grazed together on alfalfa-based pasture ad libitum and were fed their treatment diets after the morning and afternoon milking. Milk production (30.0 and 31.2 kg/d), milk fat percentages (3.64 and 3.50), milk fat yield (1.08 and 1.09 kg/d), milk protein percentages (2.97 and 2.88), and milk protein yield (0.99 and 0.91 kg/d) for diets 1 and 2, respectively, were not affected by the treatment diets. The concentrations of cis-9, trans-11 CLA (1.64 vs. 0.84 g/100 g of fatty acids) and vaccenic acid (5.11 vs. 2.20 g/100 g of fatty acids) in milk fat were higher for cows fed the oil-supplemented diet over the 8 wk of oil supplementation. The concentration of cis-9, trans-11 CLA in milk fat reached a maximum (1.0 and 1.64 g/100 g of fatty acids for diets 1 and 2, respectively) in wk 1 for both diets and remained relatively constant thereafter. The concentration of vaccenic acid in milk fat followed the same temporal pattern as cis-9, trans-11 CLA. In conclusion, supplementing the diet of partially grazing cows with FO and SFO increased the milk cis-9, trans-11 CLA content, and that increase remained relatively constant after 1 wk of oil supplementation.  相似文献   

7.
The objective of this study was to investigate the effect of dietary fiber level on milk fat concentration, yield, and fatty acid (FA) profile of cows fed diets low in polyunsaturated fatty acid (PUFA). Six rumen-fistulated Holstein dairy cows (639 ± 51 kg of body weight) were used in the study. Cows were randomly assigned to 1 of 2 dietary treatments, a high fiber (HF; % of dry matter, 40% corn silage, 27% alfalfa silage, 7% alfalfa hay, 18% protein supplement, 4% ground corn, and 4% wheat bran) or a low fiber (LF; % of dry matter, 31% corn silage, 20% alfalfa silage, 5% alfalfa hay, 15% protein supplement, 19% ground wheat, and 10% ground barley) total mixed ration. The diets contained similar levels of PUFA. The experiment was conducted over a period of 4 wk. Ruminal pH was continuously recorded and milk samples were collected 3 times a week. Milk yield and dry matter intake were recorded daily. The rumen fluid in cows receiving the LF diet was below pH 5.6 for a longer duration than in cows receiving the HF diet (357 vs. 103 min/d). Neither diet nor diet by week interaction had an effect on milk yield (kg/d), milk fat concentration and yield, or milk protein concentration and yield. During wk 4, milk fat concentration and milk fat yield were high and not different between treatments (4.30% and 1.36 kg/d for the HF treatment and 4.31% and 1.33 kg/d for the LF treatment, respectively). Cows receiving the LF diet had greater milk concentrations (g/100 g of FA) of 7:0; 9:0; 10:0; 11:0; 12:0; 12:1; 13:0; 15:0; linoleic acid; FA <C16; and PUFA; and lower concentrations of iso 15:0; 18:0; trans-9 18:1; cis-9, trans-11 conjugated linoleic acid (CLA); trans-9, cis-12 18:2; 20:0; and cis-9 20:1 compared with cows receiving the HF diet. Milk concentrations (g/100 g of FA) of total trans 18:1; trans-10 18:1; trans-11 18:1; trans-10, cis-12 CLA, and trans-9, cis-11 CLA were not different between treatments. The study demonstrated that cows fed a diet low in fiber and low in PUFA may exhibit subacute ruminal acidosis and moderate changes to milk fatty acid profile but without concomitant milk fat depression. The changes in FA profile may be useful for the diagnosis of SARA even in the absence of milk fat depression.  相似文献   

8.
Three Holstein cows were fed a high-concentrate diet (65:35 concentrate to forage) supplemented with either 5% sunflower oil (SO), 5% linseed oil (LO), or 2.5% fish oil (FO) to examine effects on biohydrogenation and fatty acid profiles in rumen, blood plasma, and milk. Diets were fed in a 3 × 3 Latin square with 4-wk periods with grass hay as the forage. Milk yield, dry matter intake, and percentages of milk fat (2.64) and protein (3.22) did not differ. All diets resulted in incomplete hydrogenation of unsaturated fatty acids as indicated by the profiles of 18:1 isomers, conjugated 18:2 isomers, nonconjugated 18:2 isomers, and 18:0 in ruminal fluid. Percentages of 8:0-14:0 and 16:0 in milk fat were greater with FO. Percentage and yield of trans10,cis12-18:2 were small and greater in cows fed SO (0.14%, 0.57 g/d) than FO (0.03%, 0.15 g/d) or LO (0.04%, 0.12 g/d). Percentage and yield of trans10-18:1, however, increased with FO (6.16%) and SO (6.47%) compared with LO (1.65%). Dietary FO doubled percentage of cis11-18:1 in rumen, plasma, and milk fat. Despite a lack of difference in ruminal percentage of trans11-18:1 (10.5%), cows fed FO had greater plasma trans11-18:1 (116 vs. 61.5 μg/mL) but this response did not result in greater trans11-18:1 percentage in milk fat, which averaged 5.41% across diets. Percentage (2.2%) and yield (14.3 g/d) of cis9,trans11-18:2 in milk fat did not differ due to oils. Unique responses to feeding LO included greater than 2-fold increases in percentages of trans13+14-18:1, trans15-18:1, trans16-18:1, cis15-18:1, cis9,trans12-18:2 and trans11,cis15 -18:2 in umen, plasma, and milk, and cis9,trans13-18:2 in plasma and milk. Ruminal 18:0 percentage had the highest positive correlation with milk fat content (r = 0.82) across all diets. When compared with previous data with cows fed high-concentrate diets without oil supplementation, results suggest that greater production of trans10-18:1, cis11-18:1, and trans11,cis15-18:2 coupled with low production of 18:0 in the rumen may be associated with low milk fat content when feeding high-concentrate diets and fish oil. In contrast, SO or LO could lead to low milk fat content by increasing ruminal trans10-18:1 (SO) or trans11,cis15-18:2 and trans9,trans12-18:2 (LO) along with a reduction in mammary synthesis of 8:0-16:0. Simultaneous increases in ruminal trans11-18:1 with fish oil, at a fraction of sunflower oil supplementation, may represent an effective strategy to maintain cis9,trans11-18:2 synthesis in mammary while reducing milk fat output and sparing energy.  相似文献   

9.
The objective of this study was to investigate the effect of monensin (MN) and dietary soybean oil (SBO) on milk fat percentage and milk fatty acid (FA) profile. The study was conducted as a randomized complete block design with a 2 × 3 factorial treatment arrangement using 72 lactating multiparous Holstein dairy cows (138 ± 24 d in milk). Treatments were [dry matter (DM) basis] as follows: 1) control total mixed ration (TMR, no MN) with no supplemental SBO; 2) MN-treated TMR (22 g of MN/kg of DM) with no supplemental SBO; 3) control TMR including 1.7% SBO; 4) MN-treated TMR including 1.7% SBO; 5) control TMR including 3.4% SBO; and 6) MN-treated TMR including 3.4% SBO. The TMR (% of DM; corn silage, 31.6%; haylage, 21.2%; hay, 4.2%; high-moisture corn, 18.8%; soy hulls, 3.3%; and protein supplement, 20.9%) was offered ad libitum. The experiment consisted of a 2-wk baseline, a 3-wk adaptation, and a 2-wk collection period. Monensin, SBO, and their interaction linearly reduced milk fat percentage. Cows receiving SBO with no added MN (treatments 3 and 5) had 4.5 and 14.2% decreases in milk fat percentage, respectively. Cows receiving SBO with added MN (treatments 4 and 6) had 16.5 and 35.1% decreases in milk fat percentage, respectively. However, the interaction effect of MN and SBO on fat yield was not significant. Monensin reduced milk fat yield by 6.6%. Soybean oil linearly reduced milk fat yield and protein percentage and linearly increased milk yield and milk protein yield. Monensin and SBO reduced 4% fat-corrected milk and had no effect on DM intake. Monensin interacted with SBO to linearly increase milk fat concentration (g/100 g of FA) of total trans-18:1 in milk fat including trans-6 to 8, trans-9, trans-10, trans-11, trans-12 18:1 and the concentration of total conjugated linoleic acid isomers including cis-9, trans-11 18:2; trans-9, cis-11 18:2; and trans-10, cis-12 18:2. Also, the interaction increased milk concentration of polyunsaturated fatty acids. Monensin and SBO linearly reduced, with no significant interaction, milk concentration (g/100 g of FA) of short- and medium-chain fatty acids (<C16). Soybean oil reduced total saturated FA and increased total monounsaturated FA. These results suggest that monensin reduces milk fat percentage and this effect is accentuated when SBO is added to the ration.  相似文献   

10.
Two experiments with rumen-fistulated dairy cows were conducted to evaluate the effects of feeding docosahexaenoic acid (DHA; C22:6 n-3)-enriched diets or diets provoking a decreased rumen pH on milk fatty acid composition. In the first experiment, dietary treatments were tested during 21-d experimental periods in a 4 × 4 Latin square design. Diets included a control diet, a starch-rich diet, a bicarbonate-buffered starch-rich diet, and a diet supplemented with DHA-enriched micro algae [Schizochytrium sp., 43.0 g/kg of dry matter intake (DMI)]. Algae were supplemented directly through the rumen fistula. The total mixed ration consisted of grass silage, corn silage, soybean meal, and a standard or glucogenic concentrate. The glucogenic and buffered glucogenic diet had no effect on rumen fermentation and milk fatty acid composition because, unexpectedly, no reduced rumen pH was detected. The algae diet had no effect on rumen pH but provoked decreased butyrate and increased isovalerate molar proportions in the rumen. In addition, algae supplementation affected rumen biohydrogenation of linoleic and linolenic acid as reflected in the modified milk fatty acid composition toward increased conjugated linoleic acid (CLA) cis-9 trans-11, CLA trans-9 cis-11, C18:1 trans-10, C18:1 trans-11, and C22:6 n-3 concentrations. Concomitantly, on average, a 45% decrease in DMI and milk yield was observed. Based on these drastic and impractical results, a second animal experiment was performed for 20 d in which 9.35 g/kg of total DMI of algae were incorporated in the concentrate and supplemented to 3 rumen-fistulated cows. Algae concentrate feeding increased rumen pH, which was associated with decreased rumen short-chain fatty acid concentrations. Moreover, a different shift in rumen short-chain fatty acid proportions was observed compared with the first experiment because molar proportions of butyrate, isobutyrate, and isovalerate increased, whereas acetate molar proportion decreased. The milk fatty acid profile changed as in experiment 1. However, the decrease in DMI and milk yield was less pronounced (on average 10%) at this algae supplementation level, whereas milk fat percentage decreased from 47.9 to 22.0 g/kg of milk after algae treatment. In conclusion, an algae supplementation level of about 10 g/kg of DMI proved effective to reduce the milk fat content and to modify the milk fatty acid composition toward increased CLA cis-9 trans-11, C18:1 trans, and DHA concentrations.  相似文献   

11.
The objective of the study was to evaluate the effect of diets supplemented with fatty acids of different degrees of saturation, in the absence or presence of an antioxidant (AOX; Agrado Plus, Novus International Inc., St. Charles, MO), on dairy cow lactation performance. Calcium salts of long-chain fatty acids were supplemented as a source of lower saturation fatty acid, and a palm acid product was supplemented as the higher saturation fatty acid source. Sixty early-lactation Chinese Holstein cows (100 ± 23 d in milk) were randomly allocated to 4 dietary treatments in a 2 × 2 factorial design: (1) lower saturation fatty acid (LS), (2) LS and AOX, (3) higher saturation fatty acid (HS), and (4) HS and AOX. The Ca salts of long-chain fatty acids and palm acid product were supplied at 1.8 and 1.5% on a dry matter basis, respectively, to form isoenergetic diets. The AOX was added at 0.025% in the ration. The experiment lasted 9 wk, including 1 wk for adaptation. Lactation performance was recorded and milk was sampled and analyzed weekly. Blood samples were taken from the coccygeal vein to determine metabolism parameters on d 16, 36, and 56 during the experiment. Neither fatty acid type nor AOX supplementation showed a significant effect on dry matter intake during the study. Milk yield was lower in the LS-fed cows compared with the cows fed HS. Milk fat and milk protein concentrations were not affected by fatty acid type or AOX supplementation. Adding AOX increased the yield of milk in the LS-fed cows, but did not affect those fed HS. Activity of plasma superoxide dismutase was significantly lower, plasma glucose tended to be lower, and plasma malondialdehyde was higher in the LS-fed animals compared with those fed HS. Addition of AOX decreased both plasma nonesterified fatty acids and hydrogen peroxide contents and increased total antioxidant capacity across the fatty acid types. Plasma β-hydroxybutyrate was not affected by fatty acid type or AOX treatment. Cows fed LS had higher cis-9 C18:1 and trans-10, cis-12 C18:2 in milk at the expense of C18:0, whereas AOX addition increased milk cis-9 C18:1 at the expense of milk C12:0, C16:0, and trans-10, cis-12 C18:2. It is inferred that feeding LS resulted in inferior lactation performance, whereas addition of antioxidant partially alleviated these negative effects.  相似文献   

12.
The objective was to evaluate the effects of feeding ground canola seed on the fatty acid profile, yield, and composition of milk from dairy cows. Twenty-four multiparous Holstein cows (548.3 ± 11.9 kg body weight and 28 ± 9 d in lactation) were randomly assigned to 1 of 2 treatments: Control (CON) or ground canola seed treatment (GCS) with 14% [of diet dry matter (DM)] of the total ration as ground canola seed containing 34% lipid. Diets contained 20% crude protein, but varied in net energy as a result of fat content differences of 2.5% and 6.4% (DM) for CON and GCS, respectively. Diets were composed of corn, corn silage, alfalfa (50:50 ground hay and haylage, DM basis), soybean and blood meal, and vitamins and minerals. Mechanically extruded canola meal was used in the CON diet to adjust for the protein from canola seed in the GCS diet. Cows were housed in tie-stalls and fed and milked twice daily for 10 wk. The inclusion of ground canola seed did not alter DM intake, weight gain, or body condition score of cows. Milk fat from GCS cows had greater proportions of long-chain fatty acids (≥18 carbons) and a lower ratio of n-6 to n-3 fatty acids. Feeding GCS reduced the proportion of short- and medium-chain fatty acids. Milk fat from cows fed GCS had a greater proportion of vaccenic acid and tended to have a higher proportion of cis-9,trans-11 conjugated linoleic acid. Actual and 3.5% fat-corrected milk yields were similar between treatments. The milk fat and protein percentages were lower for GCS cows, but total yield of these components was similar between treatments. Milk urea nitrogen was lower and serum urea nitrogen tended to be lower in cows fed canola seed. Serum glucose, insulin, and nonesterified fatty acids were not altered, but serum triglycerides were higher in GCS cows. Ammonia and total volatile fatty acids tended to be lower in ruminal fluid from GCS cows; rumen pH was unchanged. Feeding canola seed to lactating dairy cows resulted in milk fat with higher proportions of healthful fatty acids without affecting milk yield or composition of milk.  相似文献   

13.
The effects of supplementation with rapeseed, sunflower, and linseed oils (0.5 kg/d; good sources of oleic, linoleic, and linolenic acids, respectively) on milk responses and milk fat fatty acid (FA) profile, with special emphasis on rumen-derived biohydrogenation intermediates (BI), were evaluated in a replicated 4 × 4 Latin square study using 16 grazing dairy cows. The dietary treatments were 1) control diet: 20-h access to grazing pasture supplemented with 5 kg/d of corn-based concentrate mixture (96% corn; CC); 2) RO diet: 20-h access to grazing supplemented with 4.5 kg/d of CC and 0.5 kg of rapeseed oil; 3) SO diet: 20-h access to grazing supplemented with 4.5 kg/d of CC and 0.5 kg of sunflower oil; and 4) LO diet: 20-h access to grazing supplemented with 4.5 kg/d of CC and 0.5 kg of linseed oil. Milk fatty acids were converted to methyl esters and analyzed by gas-liquid chromatography and silver-ion HPLC. Dietary treatments had no effect on milk production or on milk protein content and milk protein production. Supplementation with rapeseed and sunflower oils lowered milk fat content and milk fat production, but linseed oil had no effect. Inclusion of dietary vegetable oils promoted lower concentrations of short-chain (including 4:0) and medium-chain FA (including odd- and branched-chain FA) and 18:3n-3, and higher concentrations of C18 FA (including stearic and oleic acids). The BI concentration was higher with the dietary inclusion of vegetable oils, although the magnitude of the concentration and its pattern differed between oils. The RO treatment resulted in moderate increases in BI, including trans 18:1 isomers and 18:2 trans-7,cis-9, but failed to increase 18:1 trans-11 and 18:2 cis-9,trans-11. Sunflower oil supplementation resulted in the highest concentrations of the 18:1 trans-10, 18:1 cis-12, and 18:2 trans-10,trans-12 isomers. Concentrations of 18:1 trans-11 and 18:2 cis-9,trans-11 were higher than with the control and RO treatments but were similar to the LO treatment. Concentration of BI in milk fat was maximal with LO, having the highest concentrations of some 18:1 isomers (i.e., trans-13/14, trans-15, cis-15, cis-16), most of the nonconjugated 18:2 isomers (i.e., trans-11,trans-15, trans-11,cis-15, cis-9,cis-15, and cis-12,cis-15), and conjugated 18:2 isomers (i.e., trans-11,cis-13, cis-12,trans-14, trans-11,trans-13, trans-12,trans-14, and trans-9,trans-11), and all conjugated 18:3 isomers. The LO treatment induced the highest amount and diversity of BI without decreasing milk fat concentration, as the RO and SO treatments had, suggesting that the BI associated with 18:3n-3 intake may not be the major contributors to inhibition of mammary milk fat synthesis.  相似文献   

14.
Sixteen multiparous cows (12 Holstein and 4 Brown Swiss, 132 ± 20 d in milk) were used in a replicated 4 × 4 Latin square design with 4-wk periods to determine the effects of feeding corn germ on dairy cow performance. Diets were formulated with increasing concentrations of corn germ (Dakota Germ, Poet Nutrition, Sioux Falls, SD) at 0, 7, 14, and 21% of the diet dry matter (DM). All diets had a 55:45 forage to concentrate ratio, where forage was 55% corn silage and 45% alfalfa hay. Dietary fat increased from 4.8% in the control diet to 8.2% at the greatest inclusion level of corn germ. The addition of corn germ resulted in a quadratic response in DM intake with numerically greater intake at 14% of diet DM. Feeding corn germ at 7 and 14% of diet DM increased milk yield and energy-corrected milk as well as fat percentage and yield. Milk protein yield tended to decrease as the concentration of corn germ increased in the diet. Dietary treatments had no effect on feed efficiency, which averaged 1.40 kg of energy-corrected milk/kg of DMI. Increasing the dietary concentration of corn germ resulted in a linear increase in milk fat concentrations of monounsaturated and polyunsaturated fatty acids at the expense of saturated fatty acids. Milk fat concentration and yield of cis-9, trans-11 and trans-10, cis-12 conjugated linoleic acid were increased with increased dietary concentrations of corn germ. Although milk fat concentrations of both total trans-18:1 and cis-18:1 fatty acids increased linearly, a marked numeric increase in the concentration of trans-10 C18:1 was observed in milk from cows fed the 21% corn germ diet. A similar response was observed in plasma concentration of trans-10 C18:1. Feeding increasing concentrations of corn germ had no effect on plasma concentrations of glucose, triglyceride, or β-hydroxybutyrate; however, the concentration of nonesterified fatty acids increased linearly, with plasma cholesterol concentration demonstrating a similar trend. Germ removed from corn grain before ethanol production provides an alternative source of fat for energy in lactating dairy cows when fed at 7 and 14% of diet DM. Our results suggest that fat from corn germ may be relatively protected with no adverse effect on DM intake, milk production, and milk composition when fed up to 14% of diet DM.  相似文献   

15.
The effect of supplementation of increasing amounts of extruded linseed in diets based on hay (H; experiment 1) or corn silage (CS; experiment 2) was investigated in regard to dairy performance and the milk fatty acid (FA) composition. In each experiment, 4 lactating multiparous Holstein cows were used in a 4 × 4 Latin square design (28-d periods). The cows were fed a diet (50:50 and 40:60 concentrate:forage ratio for experiments 1 and 2, respectively; dry matter basis) without supplementation (H0 or CS0) or supplemented with 5% (H5 or CS5), 10% (H10 or CS10), or 15% (H15 or CS15) of extruded linseed. Regardless of the forage type, diet supplementation with increasing amounts of extruded linseed had no effect on the dry matter intake, milk yield, or protein content or yield. In contrast, the milk fat content decreased progressively from H0 to H10 diets, and then decreased strongly with the H15 diet in response to increasing amounts of extruded linseed. For CS diets, the milk fat content initially decreased from CS0 to CS10, but then increased with the CS15 diet. For the H diets, the milk saturated FA decreased (−24.1 g/100 g of FA) linearly with increasing amounts of extruded linseed, whereas the milk monounsaturated FA (+19.0 g/100 g), polyunsaturated FA (+4.9 g/100 g), and total trans FA (+14.7 g/100 g) increased linearly. For the CS diets, the extent of the changes in the milk FA composition was generally lower than for the H diets. Milk 12:0 to 16:0 decreased in a similar manner in the 2 experiments with increasing amounts of extruded linseed intake, whereas 18:0 and cis-9 18:1 increased. The response of total trans 18:1 was slightly higher for the CS than H diets. The milk trans-10 18:1 content increased more with the CS than the H diets. The milk cis-9,trans-11 conjugated linoleic acid response to increasing amounts of extruded linseed intake was linear and curvilinear for the H diets, whereas it was only linear for the CS diets. The milk 18:3n-3 percentage increased in a similar logarithmic manner in the 2 experiments. It was concluded that the milk FA composition can be altered by extruded linseed supplementation with increasing concentrations of potentially health-beneficial FA (i.e., oleic acid, 18:3n-3, cis-9,trans-11 conjugated linoleic acid, and odd- and branched-chain FA) and decreasing concentrations of saturated FA. Extruded linseed supplementation increased the milk trans FA percentage.  相似文献   

16.
This study was conducted to examine the effects of dietary supplementation with vegetable oils on performance of high-yielding lactating cows and conjugated linoleic acid (CLA) content in milk fat. Twelve lactating Holstein cows in early lactation (30 to 45 d postpartum) were used in a triple 4 × 4 Latin square design. In each period, the cows in each group were fed the same basal diet and received one of the following treatments: 1) control (without oil), 2) 500 g of cottonseed oil, 3) 500 g of soybean oil, and 4) 500 g of corn oil. Each experimental period lasted for 3 wk, with the first 2 wk used for adaptation to the diet. Supplementation with vegetable oils tended to increase milk yield, with the highest milk yield in the cottonseed oil group (35.0 kg/d), compared with the control (34.4 kg/d). Milk fat percentage was decreased, but there were few effects on percentage and yield of milk protein as well as milk fat yield. The cows fed added soybean oil produced milk with the highest content of trans-11 C18:1 (23.8 mg/g of fat), which was twice that of the control (12.6 mg/g of fat). Content of cis-9, trans-11 CLA in milk fat increased from 3.5 mg/g in the control to 6.0, 7.1, and 10.3 mg/g for the cows fed oils from cottonseed, corn, and soybean, respectively. A significant linear relationship existed between trans-11 C18:1 and cis-9, trans-11 CLA. Supplementation with oils doubled the content of total fatty acids in blood plasma, with little difference between different vegetable oil sources. Octadecenoic acid content was significantly higher in blood plasma of animals fed added oils from cottonseed and soybean than those fed with corn oil and control. The plasma trans-11 C18:1 content was significantly higher in the oil-added animals than in control. Supplementation of vegetable oils tended to improve milk production of lactating cows, and the CLA content in milk fat was significantly increased. Soybean oil seemed to be the optimal source to increase CLA production.  相似文献   

17.
Forty Holstein dairy cows were used to determine the effectiveness of linoleic or linolenic-rich oils to enhance C18:2cis-9, trans-11 conjugated linoleic acid (CLA) and C18:1trans-11 (vaccenic acid; VA) in milk. The experimental design was a complete randomized design for 9 wk with measurements made during the last 6 wk. Cows were fed a basal diet containing 59% forage (control) or a basal diet supplemented with either 4% soybean oil (SO), 4% flaxseed oil (FO), or 2% soybean oil plus 2% flaxseed oil (SFO) on a dry matter basis. Total fatty acids in the diet were 3.27, 7.47, 7.61, and 7.50 g/100 g in control, SO, FO, and SFO diets, respectively. Feed intake, energy-corrected milk (ECM) yield, and ECM produced/kg of feed intake were similar among treatments. The proportions of VA were increased by 318, 105, and 206% in milk fat from cows in the SO, FO, and SFO groups compared with cows in the control group. Similar increases in C18:2cis-9, trans-11 CLA were 273, 150, and 183% in SO, FO, and SFO treatments, respectively. Under similar feeding conditions, oils rich in linoleic acid (soybean oil) were more effective in enhancing VA and C18:2cis-9, trans-11 CLA in milk fat than oils containing linolenic acid (flaxseed oil) in dairy cows fed high-forage diets (59% forage). The effects of mixing linoleic and linolenic acids (50:50) on enhancing VA and C18:2cis-9, trans-11 CLA were additive, but not greater than when fed separately. Increasing the proportion of healthy fatty acids (VA and CLA) by feeding soybean or flaxseed oil would result in milk with higher nutritive and therapeutic value.  相似文献   

18.
The objectives of this study were to evaluate the effects of protection from solar radiation and whole flaxseed supplementation on milk yield and milk fatty acid profile in lactating ewes exposed to high ambient temperature. The experiment was conducted during summer and involved 40 ewes divided into 4 groups. The ewes were either exposed (not offered shade) or protected from solar radiation (offered shade). For each solar radiation treatment, ewes were supplemented with whole flaxseed or not. Milk samples from each ewe were collected at the morning and afternoon milking every week, and analyzed for pH, total protein, casein, fat, and lactose content, somatic cell count, and renneting parameters (clotting time, rate of clot formation, and clot firmness after 30 min). At the beginning of the experiment, and then at d 23 and 44, milk samples were analyzed for milk fatty acids using gas chromatography. Flaxseed supplementation significantly increased milk yield, fat, protein, and casein yields, and somatic cell count, and increased fat and lactose contents of milk. A decrease of saturated fatty acids from C6:0 to C16:0 and an increase of C18:1 trans-11 and C18:2 cis-9,trans-11 was observed in milk from flaxseed-supplemented ewes. Flaxseed supplementation decreased saturated fatty acids content and increased total monounsaturated fatty acids content, the total content of isomers of conjugated linoleic acid, and polyunsaturated fatty acids content in milk. Flaxseed also increased the α-linolenic acid content of milk. As a result, milk from supplemented groups showed an increase in n-3 fatty acid content. Flaxseed supplementation decreased short-chain and medium-chain fatty acids, and increased long-chain fatty acid content of milk. On average, flaxseed supplementation increased the C18:2 cis-9,trans-11/C18:1 trans-11 Δ9-desaturase index starting from d 23 of the experiment, in correspondence with the highest C18:2 cis-9,trans-11 content of milk from flaxseed-supplemented ewes. Flaxseed decreased atherogenic and thrombogenic indices of milk. Protection from solar radiation during summer did not improve yield and composition of ewe milk. Nevertheless, milk from ewes exposed to solar radiation showed decreased long-chain fatty acid and polyunsaturated fatty acids contents, and in particular, decreased vaccenic acid, rumenic acid, and total conjugated linoleic acid contents.  相似文献   

19.
Increasing the α-linolenic acid (LNA; 18:3 cis-9,cis-12,cis-15) content of milk fat might help promote consumers’ health. The objective of this study was to determine the potential to alter the content of LNA in milk by duodenal infusion of a free fatty acid mixture rich in LNA. Four multiparous lactating Chinese Holstein cows fitted with duodenal cannulas were administered 2 treatments in a crossover design: an LNA-rich fatty acid infusion at varying concentrations (0, 40, 80, 120, and 160 g/d) versus a basal infusate control. Dry matter intake was not affected by LNA infusions. Milk production tended to decrease and was quadratically affected as LNA infusion increased, but 4% fat-corrected milk yield was not changed. Milk fat content tended to increase linearly with LNA infusion. Milk protein content was not changed by LNA infusion, whereas milk lactose content and yield were decreased quadratically as LNA infusion increased. Increasing the amount of LNA infused into the duodenum linearly increased concentrations of 18:3 cis-9,cis-12,cis-15 (0.61 to 25.4 g/100 g of total fatty acids) and 18:2 cis-9,cis-12 in milk fat. Increasing LNA decreased the percentages of 4:0, 14:0, and 16:0 fatty acids linearly. Increasing LNA also linearly decreased the percentages of 18:1 cis-9 and 18:2 cis-9,trans-11 in milk fat. Milk fat content of 20:5 cis-5,cis-8,cis-11,cis-14,cis-17 was quadratically affected, whereas concentrations of 18:0, 18:1 trans-9, 18:1 trans-11, and 18:2 trans-10,cis-12 were not affected. Increasing the supply of 18:3 cis-9,cis-12,cis-15 to the small intestine linearly increased 18:3 cis-9,cis-12,cis-15 in milk fat and markedly altered milk fat composition.  相似文献   

20.
Four ruminally cannulated, lactating Holstein cows were used in a 4 × 4 Latin square design (28-d periods) with a 2 × 2 factorial arrangement of treatments to study the effects of dietary addition of essential oils (0 vs. 2 g/d; EO) and monensin (0 vs. 350 mg/d; MO) on digestion, ruminal fermentation characteristics, milk production, and milk composition. Intake of dry matter averaged 22.7 kg/d and was not significantly affected by dietary additives. Apparent digestibilities of dry matter, organic matter, neutral detergent fiber, and starch were similar among treatments. Apparent digestibility of acid detergent fiber was increased when diets were supplemented with EO (48.9 vs. 46.0%). Apparent digestibility of crude protein was higher for cows fed MO compared with those fed no MO (65.0 vs. 63.6%). Nitrogen retention was not changed by additive treatments and averaged 27.1 g/d across treatments. Ruminal pH was increased with the addition of EO (6.50 vs. 6.39). Ruminal ammonia nitrogen (NH3-N) concentration was lower with MO-supplemented diets compared with diets without MO (12.7 vs. 14.3 mg/100 mL). No effect of EO and MO was observed on total volatile fatty acid concentrations and molar proportions of individual volatile fatty acids. Protozoa counts were not affected by EO and MO addition. Production of milk and 4% fat-corrected milk was similar among treatments (33.6 and 33.4 kg/d, respectively). Milk fat content was lower for cows fed MO than for cows fed diets without MO (3.8 vs. 4.1%). The reduced milk fat concentration in cows fed MO was associated with a higher level of trans-10 18:1, a potent inhibitor of milk fat synthesis. Milk urea nitrogen concentration was increased by MO supplementation, but this effect was not apparent when MO was fed in combination with EO (interaction EO × MO). Results from this study suggest that feeding EO (2 g/d) and MO (350 mg/d) to lactating dairy cows had limited effects on digestion, ruminal fermentation characteristics, milk production, and milk composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号