首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cows with isolation of Staphylococcus aureus approximately 1 week after calving and milk yield, somatic cell count (SCC), clinical mastitis (CM), and culling risk through the remaining lactation were assessed in 178 Norwegian dairy herds. Mixed models with repeated measures were used to compare milk yield and SCC, and survival analyses were used to estimate the hazard ratio for CM and culling. On average, cows with an isolate of Staph. aureus had a significantly higher SCC than culture-negative cows. If no post-milking teat disinfection (PMTD) was used, the mean values of SCC were 42,000, 61,000, 68,000 and 77,000 cells/ml for cows with no Staph. aureus isolate, with Staph. aureus isolated in 1 quarter, in 2 quarters and more than 2 quarters respectively. If iodine PMTD was used, SCC means were 36,000; 63,000; 70,000 and 122,000, respectively. Primiparous cows testing positive for Staph. aureus had the same milk yield curve as culture-negative cows, except for those with Staph. aureus isolated in more than 2 quarters. They produced 229 kg less during a 305-d lactation. Multiparous cows with isolation of Staph. aureus in at least 1 quarter produced 94-161 kg less milk in 2nd and >3rd parity, respectively, and those with isolation in more than 2 quarters produced 303-390 kg less than multiparous culture-negative animals during a 305-d lactation. Compared with culture-negative cows, the hazard ratio for CM and culling in cows with isolation of Staph. aureus in at least 1 quarter was 2.0 (1.6-2.4) and 1.7 (1.5-1.9), respectively. There was a decrease in the SCC and in the CM risk in culture-negative cows where iodine PMTD had been used, indicating that iodine PMTD has a preventive effect on already healthy cows. For cows testing positive for Staph. aureus in more than 2 quarters at calving, iodine PMTD had a negative effect on the CM risk and on the SCC through the remaining lactation.  相似文献   

2.
Group G streptococci in animals usually belong to the species Streptococcus canis and are most commonly found in dogs and cats. Occasionally, Strep. canis is detected in milk from dairy cows. An outbreak of Strep. canis mastitis in a dairy herd is described. Based on results from bacterial culture and ribotyping, a cat with chronic sinusitis was the most likely source of the outbreak. Subsequent cow-to-cow transmission of Strep. canis was facilitated by poor udder health management, including use of a common udder cloth and failure to use postmilking teat disinfection. Infected cows had macroscopically normal udders and milk, but significantly higher somatic cell counts than Strep. canis-negative herd mates. The outbreak was controlled through antibiotic treatment of lactating cows, early dry-off with dry cow therapy, culling of infected animals, and implementation of standard mastitis prevention measures. Cure was significantly more likely in dry-treated cows (87.5%) and cows treated during lactation (67%) than in untreated cows (9%). Whereas mastitis due to group G streptococci or Strep. canis in dairy cows is usually limited to sporadic cases of environmental (canine or feline) origin, this case study shows that crossing of the host species barrier by Strep. canis may result in an outbreak of mastitis if management conditions are conducive to contagious transmission. In such a situation, measures that are successful in control of Strep. agalactiae can also be used to control Strep. canis mastitis.  相似文献   

3.
Using a natural exposure trial design, the goal of our study was to evaluate the clinical efficacy of an iodine teat disinfectant with barrier properties and a high level of free iodine relative to a conventional iodine teat disinfectant with no barrier properties and low levels of free iodine. During the 18 wk of the trial, quarter milk samples were collected every 2 wk from 385 dairy cows from 2 herds. Cows on both farms were assigned in a balanced way according to milk yield, number of lactation, days in milk, somatic cell count (SCC) and microbiology culture pretrial into one of following groups: nonbarrier post milking teat disinfectant (NBAR; n = 195 cows; 747 quarters) or barrier postmilking teat disinfectant (BAR; n = 190 cows; 728 quarters). Afterward, at each scoring date every 2 wk, milk SCC was quantified in samples from all mammary quarters and microbiologic culture was only performed on milk samples with SCC >200,000 cells/mL for multiparous cows and SCC >100,000 cells/mL for primiparous cows. A new intramammary infection (NIMI) was defined when a quarter had milk SCC <200,000 cells/mL for multiparous cows and <100,000 cells/mL for primiparous without microorganism isolation, and in a subsequent sampling visit had milk SCC >200,000 cells/mL for multiparous cows and >100,000 cells/mL for primiparous cows, and positive microorganism isolation. A quarter could have several NIMI, but only 1 case per specific pathogen was considered. The most frequently isolated microorganism group on both farms was Streptococcus spp. (6.25% of total mammary quarters), followed by coagulase-negative staphylococci (3.6%) and Corynebacterium spp. (1.5%). In the present study, an interaction occurred between treatment and week of trial on the incidence risk of NIMI. Quarters disinfected with BAR had 54 and 37% lower odds of NIMI than quarters disinfected with NBAR at 8 and 16 wk of the trial, respectively; whereas at other weeks of the study both products had similar incidence risks of NIMI. Overall, teats disinfected with BAR had 46% lower odds of acquiring a clinical mastitis than those disinfected with NBAR. We concluded that the postmilking teat disinfectant with barrier properties and higher free iodine content reduced the risk of clinical mastitis, although differences in new infections were detected at only weekly time points.  相似文献   

4.
The association between somatic cell count (SCC) and daily milk yield in different stages of lactation was investigated in cows free of clinical mastitis (CM). Data were recorded between 1989 and 2004 in a research herd, and consisted of weekly test-day (TD) records from 1,155 lactations of Swedish Holstein and Swedish Red cows. The main data set (data set A) containing 36,117 records excluded TD affected by CM. In this data set, the geometric mean SCC was 55,000 and 95,000 cells/mL in primiparous and multiparous cows, respectively. A subset of data set A (data set B), containing 27,753 records excluding all TD sampled in lactations affected by CM, was created to investigate the effect of subclinical mastitis (SCM) in lactations free of CM. Daily milk yields were analyzed using a mixed linear model with lactation stage; linear, quadratic and cubic regressions of log2-transformed and centered SCC nested within lactation stage; weeks in lactation; TD season; parity; breed; pregnancy status; year-season of calving; calving, reproductive, metabolic and claw disorders; and housing system as fixed effects. A random regression was included to further improve the modeling of the lactation curve. Primiparous and multiparous cows were analyzed separately. The magnitude of daily milk loss associated with increased SCC depended on stage of lactation and parity, and was most extensive in late lactation irrespective of parity. In data set A, daily milk loss at an SCC of 500,000 cells/mL ranged from 0.7 to 2.0 kg (3 to 9%) in primiparous cows, depending on stage of lactation. In multiparous cows, corresponding loss was 1.1 to 3.7 kg (4 to 18%). Regression coefficients of primiparous cows estimated from data set B were consistent with those obtained from data set A, whereas data set B generated more negative regression coefficients of multiparous cows suggesting a higher milk loss associated with increased SCC in lactations in which the cow did not develop CM. The 305-d milk loss in the average lactation affected with SCM was 155 kg of milk (2%) in primiparous cows and 445 kg of milk (5%) in multiparous cows. It was concluded that multiparous cows in late lactation can be expected to be responsible for the majority of the herd-level production loss caused by SCM, and that preventive measures need to focus on reducing the incidence of SCM in such cows.  相似文献   

5.
The aim of this observational retrospective cohort study was to identify management procedures that are associated with herd-level eradication of Streptococcus agalactiae in dairy herds. The objective was to compare herds that recovered from Strep. agalactiae with herds that remained infected with Strep. agalactiae on the basis of specific management procedures. Data from the Danish surveillance program for Strep. agalactiae, where all milk delivering dairy herds are tested yearly, were used to identify study herds. One hundred ninety-six herds that were classified in the program as infected with Strep. agalactiae, in both January 2013 and January 2014, were identified as study herds. These were followed until January 2017. One hundred forty-four herds remained infected every year until January 2017. Forty-six herds recovered from Strep. agalactiae after January 2014 (were tested negative continuously after January 2015, January 2016, or January 2017 and remained noninfected in the program from recovery until January 2017). Herd characteristics and management procedures were obtained through the Danish Cattle Database. Herd characteristics included herd size, yield, milking system, and bulk milk somatic cell count (SCC). Management procedures included the proportion of cows culled within 100 d after calving due to mastitis, the extent of diagnoses relative to the extent of mastitis treatments, the proportion of cows treated for mastitis during lactation, the proportion of cows treated for mastitis early in lactation, the proportion of cows treated at dry-off, and the median length of the dry period for cows receiving dry cow treatment. All variables were calculated on herd level. Multivariable logistic regression was used to analyze the association between herd infection status and management procedures. A higher proportion of culling due to mastitis within 100 d from calving was associated with a higher probability of herd-level recovery from Strep. agalactiae in herds with conventional milking system. For example, herds with conventional milking, a bulk milk SCC of 260,000 cells/mL, and 10% early culling due to mastitis had a recovery probability of 0.13, whereas similar herds with 20% early culling due to mastitis had a recovery probability of 0.15. A higher proportion of mastitis treatments within 250 d postcalving was associated with a higher probability of herd-level recovery for herds with a relatively high bulk milk SCC. For example, herds with conventional milking, a bulk milk SCC of 260,000 cells/mL, and 10% lactational mastitis treatments had a recovery probability of 0.12, whereas similar herds with 20% lactational mastitis treatments had a recovery probability of 0.15. Herds with a low bulk milk SCC (<220,000 cells/mL) combined with a low proportion of lactational treatments (<0.2) had a relatively high probability of herd-level recovery (>0.2). Additional variables, including the proportion of dry cow treatments, were not associated with herd-level recovery from Strep. agalactiae.  相似文献   

6.
Data from 274 Dutch herds recording clinical mastitis (CM) over an 18-mo period were used to investigate the effect of pathogen-specific CM on the lactation curve for somatic cell count (SCC). Analyzed pathogens were Staphylococcus aureus, coagulase-negative staphylococci, Escherichia coli, Streptococcus dysgalactiae, Streptococcus uberis, other streptococci, and the culture-negative samples. The dataset contained 178,754 test-day records on SCC, recorded in 26,411 lactations of 21,525 cows of different parities. In lactations without both clinical and subclinical mastitis, SCC was high shortly after parturition, decreased to a minimum at 50 days in milk (DIM), and increased slowly toward the end of the lactation. Effects of CM on lactation curves for SCC differed among the pathogens isolated. Before a case of clinical E. coli mastitis occurred, SCC was close to the SCC of lactations without both clinical and subclinical mastitis, and after the case of CM had occurred, SCC returned rather quickly to a low level again. Similar curves were found for lactations with cases of CM associated with culture-negative samples. Before a case of clinical Staph. aureus mastitis occurred, average SCC was already high, and it remained high after the occurrence. Effects of CM associated with Strep. dysgalactiae, Strep. uberis, and other streptococci on the lactation curve for SCC were comparable. They showed a continuous increase in SCC until the case of pathogen-specific CM occurred, and afterwards SCC stayed at a higher level. Using SCC test-day records, these typical characteristics of each pathogen may be used to find more effective indicators of CM.  相似文献   

7.
It is well established that subclinical mastitis (SCM), characterized by somatic cell count (SCC) >200,000 cells/mL, has a negative effect on the productivity, reproductive performance, and survivability of cows from conventional dairy herds. However, in organic herds, where the use of antimicrobial drugs is restricted for the treatment and control of intramammary infections (IMI) in dairy cows, little is known about the effect of SCM on performance and survivability. The objective of this study was to evaluate whether SCM diagnosed during the first month of lactation was associated with SCC linear score dynamics, milk production, fertility, and culling of dairy cows in USDA-certified organic herds. We collected data from 2 organic herds in New Mexico and Texas. A total of 1,511 cows that calved between June 2018 and May 2019 were included in the study and were followed until month 10 of the current lactation. Cows with SCC >200,000 cells/mL in the first month of lactation were considered to have SCM. We used mixed linear regression models accounting for repeated measures to assess the effect of SCM on monthly milk production and SCC linear scores. We used Cox proportional hazards models to evaluate the effect of SCM on the risk of pregnancy and culling. We considered parity, farm, previous gestation length, stillbirth, twinning, dystocia, and 2- and 3-way interactions as potential confounders. Cows diagnosed with SCM during the first month of lactation produced less milk than cows without SCM. Cows with SCM had elevated SCC linear scores during their previous lactation and throughout the subsequent months of lactation compared to cows without SCM. The effect of SCM on SCC linear scores was more pronounced in multiparous than primiparous cows. Subclinical mastitis during the first month of lactation did not affect the likelihood of pregnancy during the first 300 d in milk. Cows with SCM in the first month were more likely to die or be culled during the 300 d of lactation than cows without SCM. We observed that elevated SCC in the first month of lactation had detrimental effects on the milk yield and survivability of dairy cows in USDA organic herds, but it did not affect reproductive performance. We demonstrated that cows with SCM diagnosed in the first month of lactation continued to have elevated SCC linear scores throughout their entire lactation, and that elevated SCC was carried over from the previous lactation.  相似文献   

8.
In quarter milk samples from 2,492 randomly sampled cows that were selected without regard to their current or previous udder health status, the relationships between the following outcome variables were studied: treatment of clinical mastitis; the joint event of either treatment or culling for mastitis; culling for all reasons; culling specifically for mastitis; and the covariates of positive milk culture for Staphylococcus aureus, Streptococcus spp., and coagulase-negative Staphylococcus spp., or other pathogens, or of negative culture for mastitis pathogens. Microbiological diagnoses were assigned at the cow level, and altogether 3,075 diagnoses were related to the outcome variables. The relation between the absence of pathogens and rich (>1,500 cfu/mL of milk) or sparse (≤1,500 cfu/mL of milk) growth of Staph. aureus were also assessed separately for each outcome variable. The hazard of treatment of clinical mastitis was greater for cows diagnosed with Staph. aureus compared with cows with no pathogens in all analyses. Cows with sparse growth of Staph. aureus upon microbiological analysis were more likely to be treated for clinical mastitis, and cows with rich growth of the bacteria experienced a higher overall risk of culling when the models adjusted for cow composite milk somatic cell count. No difference between rich and sparse growth of Staph. aureus was found when mastitis was defined as the joint event of either culling for mastitis or treatment of clinical mastitis, and when the relationship with culling specifically for mastitis was assessed. The combined outcome of treatment and culling for mastitis was related to a positive diagnosis of Strep. spp. after cow composite milk somatic cell count was omitted from the model. Presence of Streptococcus spp. was also related to culling specifically for mastitis, whereas culling for all reasons and treatment of clinical mastitis was not related to a positive culture of Strep. spp. Presence of coagulase-negative Staph. spp. or other pathogens was not associated with either of the outcome variables.  相似文献   

9.
The ability to detect mastitis pathogens based on their volatile metabolites was studied. Milk samples from cows with clinical mastitis, caused by Staphylococcus aureus, coagulase-negative staphylococci, Streptococcus uberis, Streptococcus dysgalactiae, and Escherichia coli were collected. In addition, samples from cows without clinical mastitis and with low somatic cell count (SCC) were collected for comparison. All mastitis samples were examined by using classical microbiological methods, followed by headspace analysis for volatile metabolites. Milk from culture-negative samples contained a lower number and amount of volatile components compared with cows with clinical mastitis. Because of variability between samples within a group, comparisons between pathogens were not sufficient for classification of the samples by univariate statistics. Therefore, an artificial neural network was trained to classify the pathogen in the milk samples based on the bacterial metabolites. The trained network differentiated milk from uninfected and infected quarters very well. When comparing pathogens, Staph. aureus produced a very different pattern of volatile metabolites compared with the other samples. Samples with coagulase-negative staphylococci and E. coli had enough dissimilarity with the other pathogens, making it possible to separate these 2 pathogens from each other and from the other samples. The 2 streptococcus species did not show significant differences between each other but could be identified as a different group from the other pathogens. Five groups can thus be identified based on the volatile bacterial metabolites: Staph. aureus, coagulase-negative staphylococci, streptococci (Strep. uberis and Strep. dysgalactiae as one group), E. coli, and uninfected quarters.  相似文献   

10.
《Journal of dairy science》2022,105(8):7036-7046
Mitochondria are central to metabolism and are the primary energy producers for all biosynthesis, including lactation. The objectives of this study were to determine if high- and low-producing dairy cows exhibit differences in peripheral blood mononuclear cell mitochondrial enzyme activities of citrate synthase, complex I, complex IV, and complex V during early lactation and, thus, to determine whether those differences were related to differences in lactation performance in the dairy cow. Fifty-six Holstein cows were assigned to 1 of 4 groups: (1) primiparous high, (2) primiparous low, (3) multiparous high, or (4) multiparous low. Primiparous and multiparous cows were analyzed separately. Then, cows were divided into high or low production groups for each production parameter [peak milk, average milk, energy-corrected milk (ECM), fat-corrected milk (FCM), milk lactose, milk fat, milk protein, total solids (TS), solids-not-fat, feed efficiency, and somatic cell count (SCC)]. For all data analysis, production parameters are expressed as yields (kg/d) and SCC (103 cells/mL). High and low production groups were defined by their respective mean production parameters for the 56 cows, with below average cows defined as low and above average cows defined as high. Whole blood samples were collected at one time point, approximately 70 d in milk at 0800 h, and processed for crude mitochondrial extracts from peripheral blood mononuclear cells to determine the activity rates of mitochondrial enzymes. Milk samples were collected 9 times (3 d, 3 times per d) during the week of blood collection and analyzed for major components (fat, protein, lactose, TS, and SCC). Multiparous cows had lower citrate synthase activity than primiparous cows across all production parameters. High-producing cows had greater complex I activity for peak milk, milk yield, ECM, FCM, milk fat, TS, and feed efficiency, and greater complex V activity for ECM, FCM, milk lactose, milk fat, and TS across parities. These findings imply that the most influential respiratory chain enzymes on the level of milk production are those responsible for electron transport chain initialization and ATP production.  相似文献   

11.
Reduction in long-term milk yields represents a notable share of the economic losses caused by bovine mastitis. Efficient, economic, and safe measures to prevent these losses require knowledge of the causal agent of the disease. The aim of this study was to investigate pathogen-specific impacts of mastitis on milk production of dairy cows. The materials consisted of milk and health recording data and microbiological diagnoses of mastitic quarter milk samples of 20,234 Finnish dairy cows during 2010, 2011, and 2012. The 6 most common udder pathogens were included in the study: Staphylococcus aureus, non-aureus staphylococci (NAS), Escherichia coli, Corynebacterium bovis, Streptococcus uberis, and Streptococcus dysgalactiae. We used a 2-level multilevel model to estimate curves for lactations with and without mastitis. The data on lactation periods to be compared were collected from the same cow. To enable comparison among lactations representing diverse parities, the estimated lactation curves were adjusted to describe the cow's third lactation. Mastitis caused by each pathogen resulted in milk production loss. The extent of the reduction depended on the pathogen, the timing of mastitis during lactation, and the type of mastitis (clinical vs. subclinical). The 2 most commonly detected pathogens were NAS and Staph. aureus. Escherichia coli clinical mastitis diagnosed before peak lactation caused the largest loss, 10.6% of the 305-d milk yield (3.5 kg/d). The corresponding loss for Staph. aureus mastitis was 7.1% (2.3 kg/d). In Staph. aureus mastitis diagnosed between 54 and 120 d in milk, the loss was 4.3% (1.4 kg/d). The loss was almost equal in both clinical and subclinical mastitis caused by Staph. aureus. Mastitis caused by Strep. uberis and Strep. dysgalactiae resulted in losses ranging from 3.7% (1.2 kg/d) to 6.6% (2.1 kg/d) depending on type and timing of mastitis. Clinical mastitis caused by the minor pathogens C. bovis and NAS also had a negative effect on milk production: 7.4% (2.4 kg/d) in C. bovis and 5.7% (1.8 kg/d) in NAS when both were diagnosed before peak lactation. In conclusion, minor pathogens should not be underestimated as a cause of milk yield reduction. On single dairy farms, control of E. coli mastitis would bring about a significant increase in milk production. Reducing Staph. aureus mastitis is the greatest challenge for the Finnish dairy sector.  相似文献   

12.
Associations were estimated between pathogen-specific cases of clinical mastitis (CM) and somatic cell count (SCC) patterns based on deviations from the typical curve for SCC during lactation and compared with associations between pathogen-specific CM and lactation average SCC. Data from 274 Dutch herds recording CM over an 18-mo period were used. Pathogens found were Staphylococcus aureus, coagulase-negative staphylococci, Escherichia coli, Streptococcus dysgalactiae, Streptococcus uberis, streptococci other than Strep. dysgalactiae and Strep. uberis, and culture-negative samples. The dataset contained 245,595 test-day records on SCC, recorded in 24,012 lactations of 19,733 cows of different parities. Pattern definitions were based on three or five consecutive test-day records. The patterns differentiated between a short or longer period of increased SCC and also between lactations with and without recovery. Logistic regression was applied to identify associations between presence of patterns and occurrence of pathogens. Occurrence of overall CM in a lactation is equally or even more accurately predicted by the presence of SCC in that lactation, than by a lactation average SCC of more than 200,000 cells/mL. Patterns can also distinguish between chances of risk for specific mastitis-causing pathogens. Clinical E. coli mastitis was significantly associated with the presence of a short peak in SCC, whereas Staph. aureus was associated with long increased SCC. Streptococcus dysgalactiae was not strongly associated with any of the defined patterns of peaks in SCC, and no single unambiguous pattern was found for Strep. uberis.  相似文献   

13.
The objective of the study was to evaluate the effect of hygiene measures in automatic milking units on the transmission of 3 mastitis pathogens considered to be mainly or partly transmitted from cow to cow during milking events. Two studies were conducted as within-herd experimental trials in 2 Danish commercial dairy herds (A and B) with automatic milking systems. Interventions to enhance hygiene were implemented on the automatic milking units. The 2 studies evaluated separate interventions. In herd A, the hygiene interventions were manual wash with the Lely foam unit and adjustments on the brush-mediated teat cleaning procedure. In herd B, the hygiene intervention included automatic disinfection spray on the upper surface of the brush motor and daily change of brushes. Composite milk samples were collected longitudinally at 3- or 4-wk intervals from all lactating cows. Additional milk samples were taken from cows entering or leaving the study groups. Milk samples were analyzed with quantitative PCR. A hidden Markov model implemented within a Bayesian framework was used to estimate the transmission probability. For analysis, 701 samples from 156 cows were used for herd A, and 1,349 samples from 390 cows were used for herd B. In the intervention group in herd B, transmission of Streptococcus agalactiae was reduced to 19% (95% posterior credibility interval: 0.00–64%) of the transmission in the control group, whereas transmission of Streptococcus dysgalactiae was reduced to 17% (95% posterior credibility interval: 0.00–85%) of transmission in the control group. This suggests that automatic spray on the upper surface of the brush motor with disinfectant along with daily change of brushes collectively reduced transmission of Strep. agalactiae and Strep. dysgalactiae. Results on Staphylococcus aureus in herd B and results on manual foam cleaning and brush-mediated teat cleaning adjustments in herd A were inconclusive.  相似文献   

14.
In this study, we studied infection dynamics across the dry period using test-day somatic cell count (SCC) data from 739 Holstein cows from 33 randomly selected commercial dairy herds in Flanders, all of which applied blanket dry-cow therapy at dry-off. First, we determined infection dynamics, combining the last test-day SCC before dry-off and the first test-day SCC after calving. Next, we determined the effect of dry period infection dynamics, adjusting for the level of the second test-day SCC after calving, on the evolution of test-day SCC and milk yield (MY) and on clinical mastitis and culling hazard in the subsequent lactation. Using an SCC threshold of 200,000 cells/mL, 12.6% of the cows considered healthy before dry-off acquired a new intramammary infection (IMI) across the dry period, whereas 66.9% of the cows considered infected before dry-off cured from IMI. Infection dynamics across the dry period significantly affect a cow's SCC, clinical mastitis risk, and culling hazard in the subsequent lactation. Cows with a new IMI, a cured IMI, or a chronic IMI across the dry period had higher test-day SCC than healthy cows, and their test-day SCC evolved differently over time. This was not the case for test-day milk yield, for which no association with infection dynamics was detected. Furthermore, cows with a second test-day SCC <200,000 cells/mL had a lower test-day SCC in the remainder of the lactation than cows with a second test-day SCC ≥200,000 cells/mL, but this association was modified by infection dynamics across the dry period. The lowest test-day SCC in the remainder of the lactation was observed for cows that remained healthy across the dry period combined with a low (<200,000 cells/mL) second test-day SCC. Cows that cured from an IMI present at dry-off and cows with a chronic IMI across the dry period were more likely to develop clinical mastitis (hazard ratio = 2.22 and 2.89; 95% confidence interval = 1.45–3.43 and 1.60–5.20, respectively), and chronic IMI cows were more likely to be culled (hazard ratio = 3.68; 95% confidence interval = 1.64–8.20) in the subsequent lactation compared with healthy cows. This was not true for cows that became infected across the dry period. This study underlines the importance of good udder health management during lactation to prevent IMI at dry-off rather than curing infected cows during the dry period to ensure optimal udder health in the subsequent lactation.  相似文献   

15.
Survival analysis in a Weibull proportional hazards model was used to evaluate the impact of somatic cell count (SCC) on the involuntary culling rate of US Holstein and Jersey cows with first calvings from 1990 to 2000. The full data set, consisting of records from 978,043 Holstein and 250,835 Jersey cows, was divided into subsets (5 for Holsteins and 3 for Jerseys) based on herd average lactation SCC values. Functional longevity (also known as herd life or length of productive life) was defined as days from first calving until culling or censoring, after correcting for milk production. Our model included the time-dependent effects of herd-year-season, parity by stage of lactation interaction, within-herd-year quintile ranking for mature equivalent production, and lactation average SCC (rounded to the nearest 50,000 cells/mL), as well as the time-independent effect of age at first calving. Parameters of the Weibull distribution, as well as variance components for herd-year-season effects, were estimated within each group of herds. Mean failure and censoring times decreased as herd average SCC increased, and a nonlinear relationship was observed between SCC and longevity in all groups. The risk of culling for Holstein cows with lactation average SCC > 700,000 cells/mL was 3.4, 2.7, or 2.3 times greater, respectively, than that of Holstein cows with SCC of 200,000 to 250,000 cells/mL in herds with low, medium, or high average SCC. Likewise, the risk of culling for Jersey cows with lactation average SCC > 700,000 cells/mL was 4.0, 2.9, or 2.2 times greater, respectively, than that of Jersey cows with SCC of 200,000 to 250,000 cells/mL in low, medium, or high SCC herds. These trends may reflect more stringent culling of high SCC cows in herds with few mastitis problems. In addition, cows with lactation average SCC <100,000 cells/mL had a slightly higher risk of culling than cows with SCC of 100,000 to 200,000 cells/mL in both breeds, particularly in herds with high average SCC, where exposure to mastitis pathogens was likely.  相似文献   

16.
Milk production is a function of the number and activity of mammary epithelial cells, regardless of stage of lactation. Milk yield is generally higher in multiparous cows than in primiparous cows, but persistency is usually greater in the latter group. We compared several measures related to metabolic activity, apoptosis, and endocrine control of mammary cell growth in 8 primiparous and 9 multiparous cows throughout lactation. Mammary gland biopsies were taken in early [10 d in milk (DIM)], peak (50 DIM), and late (250 DIM) lactation to evaluate gene expression and determine DNA and fatty acid synthase (FAS) content. Milk samples taken the day before the biopsies were used to detect protease activities and to determine stanniocalcin-1 (STC) concentrations. Blood samples served to measure insulin-like growth factor-1, prolactin, and STC concentrations. Milk yield was higher in multiparous cows than in primiparous cows at the 10 DIM (32.8 ± 1.3 and 25.2 ± 0.8 kg/d) and 50 DIM (38.0 ± 1.2 and 29.8 ± 1.1 kg/d), but it was the same for both groups at 250 DIM (23.9 ± 1.5 and 23.8 ± 1.1 kg/d). Except for stearoyl-coenzyme A desaturase, expression of genes related to milk synthesis was not affected by stage of lactation. However, gene expression of acetyl-coenzyme A carboxylase, β-casein, and FAS was lower in early lactation in primiparous cows. Expression of both proapoptotic bax and antiapoptotic bcl-2 genes was higher in primiparous cows, whereas the bax-to-bcl-2 ratio was not changed. Mammary DNA concentration was higher in multiparous cows, as was the amount of FAS protein in early lactation. Two bands of protease activity were found in milk samples, and one of the bands had an apparent molecular weight similar to gelatinase A and was dependent on the stage of lactation. Serum insulin-like growth factor-1 increased with day of lactation and was higher in primiparous cows. Serum prolactin decreased in late lactation, but peak values were observed in early lactation for primiparous cows and peak lactation for multiparous cows. Milk STC content increased with advancing lactation. The results are consistent with a lower degree of differentiation and a greater capacity for cell renewal in the mammary gland of primiparous cows.  相似文献   

17.
《Journal of dairy science》2022,105(1):710-725
This randomized controlled trial on 4 commercial grazing dairy farms investigated whether treatment with pegbovigrastim (PEG) affected fertility and culling as measured during the full lactation. We also explored the effect of potential interactions of PEG treatment with parity, prepartum body condition score, prepartum nonesterified fatty acid concentration (pre-NEFA), and early-lactation clinical disease on these outcomes. Holstein cows were randomly assigned to 1 of 2 trial arms: a first PEG dose approximately 7 d before the expected calving date and a second dose within 24 h after calving (PEG: primiparous = 342; multiparous = 697) compared with untreated controls (control: primiparous = 391; multiparous = 723). Cox's proportional hazards regression models were used to analyze rate of first insemination, rate of pregnancy [within 150 and 305 d in milk (DIM)], and hazard of culling. Additional analyses were performed on data that were stratified by parity group and pre-NEFA class (low ≤0.3; high >0.3 mM). In high pre-NEFA cows, PEG treatment increased the rate of first insemination [hazard ratio (HR) = 1.15]. Early-lactation clinical mastitis (CM) and uterine disease (UD: retained placenta, metritis, or both) were associated with a reduced rate of pregnancy within 150 DIM (HR = 0.49 and 0.78, respectively). Pegbovigrastim treatment in high pre-NEFA cows with CM and UD increased the rate of pregnancy within 150 DIM (HR = 1.75 and 1.46, respectively). In high pre-NEFA cows, PEG treatment resulted in a lower hazard of culling (HR = 0.79). No treatment effect was detected in low pre-NEFA cows. This study shows that the effect of PEG treatment on fertility and culling interacts with pre-NEFA. In high pre-NEFA cows, PEG treatment increased the rate of first insemination, counteracted the negative association of early-lactation CM and UD with the rate of pregnancy, and decreased the hazard of culling.  相似文献   

18.
Coagulase-negative staphylococci (CNS) are the most prevalent cause of intramammary infections in heifers around calving, but Staphylococcus aureus should not be ignored because it is also prevalent, contagious, and more likely to persist into lactation. The objective of this study was to determine the effect of a subclinical infection caused by S. aureus or CNS diagnosed during the first month of lactation in heifers on SCC, milk production, and culling risk during the entire first lactation. Data were obtained from a cohort of 50 farms following a mastitis monitoring and control program and subscribing to the animal health record system (DS@HR) through the ambulatory clinic of the Faculté de médecine vétérinaire of the Université de Montréal (St-Hyacinthe, Québec, Canada). This program included routinely collecting a composite milk sample at each farm visit from all recently freshened heifers. A total of 2,273 Holstein heifers were examined. Among the 1,691 heifers meeting the full selection criteria, 90 (5%) were diagnosed with S. aureus, 168 (10%) were diagnosed with CNS, and 153 (9%) were negative (no pathogen isolated). Test-day natural logarithm somatic cell count (lnSCC) was modeled in a repeated measures linear regression model with herd as random effect. The model-adjusted mean lnSCC in S. aureus and CNS groups were significantly higher than in the culture-negative group from 40 to 300 d in milk. At the test-day level, lnSCC in S. aureus and CNS groups were on average 1.2 and 0.6 higher, respectively, than the culture-negative group. A similar model for milk yield showed that mean milk yield was not statistically different between culture groups from 40 to 300 d in milk. The presence of a S. aureus or CNS intramammary infections in the first month of lactation in heifers correlates with future increased SCC over the entire first lactation.  相似文献   

19.
Path analysis was used to model the direct and indirect relationships among age, previous lactation yield or estimated transmitting ability for milk, body weight, days dry, reproductive disorders, milk fever, mastitis, reproductive performance, current milk yield, and culling. Prospective data were from 784 primiparous and 2,066 multiparous Holstein lactations from 33 herds. Heifers that were older, of lighter weight, or who had lower estimated transmitting ability for milk had more problems, less milk, and poorer survival. Dystocia in heifers had several detrimental consequences including 2.9 to 4 times more retained placenta, metritis, and culling and +7.4 d more to first service. Cystic ovaries were associated directly with 376 kg greater milk yield and with a 16.5-d delay in first service. Failure to conceive at first service and mastitis increased risk of culling 5.2 to 10 times. In multiparous cows, milk fever increased risk of reproductive disorders by 1.6 to 4.2 times and indirectly contributed to poor breeding performance and increased culling. Risk of culling was increased 2.1 to 3.7 times directly by mastitis and dystocia and by poor breeding performance.  相似文献   

20.
The objective of this study was to assess the effect of treating cows with teat sealant only compared with antibiotic plus teat sealant at drying off on weekly somatic cell count, potential intramammary infection, and milk production across the entire subsequent lactation. In 3 research herds in the south of Ireland, cows with SCC that did not exceed 200,000 cells/mL in the previous lactation (LowSCC) were randomly assigned to 1 of 2 treatments at drying off: internal teat sealant alone (ITS) or antibiotic plus teat sealant (AB+ITS). Cows with SCC that exceeded 200,000 cells/mL in the previous lactation were treated with AB+ITS and included in the analyses as a separate group (HighSCC). Weekly individual animal composite SCC records were available for 654 cow lactations and were transformed to somatic cell scores (SCS) for the purpose of analysis. Data were divided into 3 data sets to represent records obtained (1) up to 35 DIM, (2) up to 120 DIM, and (3) across the lactation. Foremilk secretions were taken from all quarters at drying off, at calving, 2 wk after calving, and in mid-lactation and were cultured to detect the presence of bacteria. The LowSCC cows treated with ITS alone had higher daily milk yield (0.67 kg/d) across lactation compared with LowSCC cows treated with AB+ITS. The LowSCC cows treated with ITS alone had higher SCS in early, up to mid, and across lactation compared with LowSCC cows treated with AB+ITS. We detected no difference in weekly SCS of LowSCC cows treated with ITS alone and SCS of HighSCC cows. The least squares means back-transformed SCC across lactation of the LowSCC cows treated with ITS alone, LowSCC cows treated with AB+ITS, and HighSCC cows were 41,523, 34,001, and 38,939 cells/mL respectively. The odds of LowSCC cows treated with ITS alone having bacteria present in their foremilk across lactation was 2.7 (95% confidence interval: 1.91 to 3.85) and 1.6 (1.22 to 2.03) times the odds of LowSCC cows treated with AB+ITS and of HighSCC cows treated with AB+ITS, respectively. In this study, Staphylococcus aureus was the most prevalent pathogen isolated from the population. Recategorizing the threshold for LowSCC cows as ≤150,000 cells/mL or ≤100,000 cells/mL in the previous lactation had no effect on the results. The results indicate that herds with good mastitis control programs may use ITS alone at dry-off in cows with SCC <200,000 cells/mL across lactation with only a small effect on herd SCC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号