首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
采用97(72Ag-28Cu)-3Ti活性钎料钎焊了Diamond/Cu复合材料和Al2O3陶瓷,研究了主要钎焊条件如钎焊温度和保温时间对接头强度的影响.结果表明,钎焊过程中Ti元素易聚集在金刚石颗粒周围并形成TiC化合物层.TiC化合物的形貌与Diamond/Cu钎焊接头剪切强度有密切关系,金刚石表面生长适当厚度的TiC化合物层能增强钎焊接头的剪切强度,但如果TiC为颗粒状或TiC化合物层生长过厚,将削弱钎焊接头的剪切强度.钎焊接头的最大剪切强度可达117 MPa.  相似文献   

2.
高纯氧化铝与金属钛的钎焊   总被引:1,自引:1,他引:0       下载免费PDF全文
电真空应用中,要求高纯氧化铝与金属钛的连接接头不仅要有较好的强度,还要有高的气密性.用Ag-Cu-Ti钎料钎焊高纯氧化铝陶瓷与金属钛,钎焊温度为825~875℃,保温时间为15~20min,陶瓷表面为烧结自然表面时,钎焊接头抗剪强度可达到100MPa以上,连接温度过低或过高,保温时间过短或过长均对接头强度不利.陶瓷表面研磨后,接头强度降低.钎料厚度在60μm或105μm对接头强度的影响不大.接头由Al2O3/反应层(Cu,Al,Ti,0)/Ag Cu-Ti化合物/α-Ti(Cu)/Ti构成.反应层主要以Cu3Ti3O和Cu4Ti为主.  相似文献   

3.
利用Sn0.3Ag0.7Cu-4%Ti金属化涂料,在金属化温度900℃、保温时间30 min条件下,对Al2O3陶瓷表面进行金属化处理,然后在钎焊温度600℃、保温时间5 min条件下,利用Sn0.3Ag0.7Cu钎料实现Al2O3陶瓷与紫铜的间接钎焊,通过SEM,EDS和XRD等分析测试手段对金属化层显微组织、Al2O3陶瓷/铜接头结合强度和接头断口形貌等进行了分析.结果表明,利用金属化方法得到了均匀且与Al2O3陶瓷结合良好的金属化层,并实现了Al2O3陶瓷与铜的间接连接,接头界面结构为Cu/Cu3Sn/Cu6Sn5/Sn(s,s)+Ti6Sn5/Al2O3陶瓷.钎焊接头抗剪强度为13.6 MPa,接头断裂发生于金属间化合物层.  相似文献   

4.
在钎焊温度为780~900℃,钎焊时间为2~30 min的条件下,采用Ag-28Cu钎料对TC4钛合金进行了真空钎焊试验。利用金相显微镜、扫描电镜及能谱仪对接头微观组织进行了研究。结果表明,接头形成3个反应区:扩散区Ti_2Cu+Ti(s.s)、界面反应区Ti_2Cu/TiCu化合物以及钎缝中心区的Ag(s.s)+Cu(s.s)。随着钎焊温度的提高和保温时间的延长,扩散区及界面层的厚度增加,但过高的工艺参数会导致钎料流失从而使钎缝宽度降低。在钎焊温度为820℃,保温时间为10 min时,钎焊接头的抗剪强度最高,为121 MPa。  相似文献   

5.
通过表面涂覆活性胶改性的方法,实现了石英纤维复合材料与因瓦合金的胶接辅助钎焊连接.结果表明,含有钛的液态活性胶在焊接加热过程中与石英纤维复合材料表面纤维发生反应,并通过Ag-Cu共晶钎料层、铜中间层与因瓦合金获得致密连接,接头产生TiO,TiC,CuTi,Fe2Ti等化合物,其结构可表示为QFSC/TiO+Si+TiC+Cu(s,s)/CuTi+Cu(s,s)+Ag(s,s)/Cu(s,s)+Ag(s,s)+Fe2Ti/Invar.由不同钎焊温度接头的剪切性能对比试验得出,在850℃保温15min时的接头抗剪强度达到最大值44MPa.表面涂覆活性胶对钎料润湿的促进作用、活性金属元素Ti与复合材料纤维的化学反应及接头焊缝区产生的化合物生成相是影响连接性能的主要因素.  相似文献   

6.
采用AgCu-4.5Ti钎料直接钎焊TC4钛合金与SiO2复合材料,研究了接头界面组织结构及形成机理,分析了不同工艺参数下界面变化对接头抗剪强度的影响。研究表明:接头界面典型结构为SiO2复合材料/TiSi2/Cu4Ti3+Cu3Ti3O/ Ag(s,s)+Cu(s,s)/TiCu/Ti2Cu/α,β-Ti/TC4;钎焊温度的升高可促进两侧母材界面反应层厚度的增加,同时钎缝中部的AgCu共晶组织消失,化合物相增多;随着接头界面结构的变化,接头抗剪强度表现出先升高后降低的趋势:当钎焊温度为850 ℃,保温10 min时,接头室温最高抗剪强度达到7.8 MPa  相似文献   

7.
在钎焊时间120~1500s、钎焊温度1093~1223K的条件下,采用Ag-Cu共晶钎料对铜和1Cr18Ni9Ti进行钎焊,利用扫描电镜及能谱仪对其接头的界面组织进行了研究。结果表明,接头界面结构为Cu/Cu(s.s)/Ag(s.s)+Cu(s.s)/1Cr18Ni9Ti。以抗剪强度评价其接头的力学性能,发现当钎焊温度为1173K、保温时间为300s时,接头抗剪强度最高,为214MPa。  相似文献   

8.
在钎焊时间10 min,钎焊温度820~900℃的条件下,采用AgCu钎料对C/C复合材料和TC4进行了钎焊试验.利用扫描电镜、X射线衍射分析仪、EDS能谱分析仪对接头的界面组织及断口形貌进行了研究.结果表明,C/C复合材料与TC4连接接头的界面结构为C/C复合材料/TiC C/TiCu/Ag(s.s) Cu(s.s) Ti3Cu4/Ti3Cu4/TiCu/Ti2Cu/Ti2Cu Ti(s.s)/TC4.由压剪试验测得的接头抗剪强度可知,在钎焊温度850 ℃,保温时间10 min的钎焊条件下,接头获得的最高抗剪强度达到38 MPa.接头的断口分析表明,接头的断裂位置与被连接处碳纤维方向和钎焊温度有关.当碳纤维轴平行于连接面时,断裂发生在复合材料中.当碳纤维轴垂直于连接面时,若钎焊温度较低,断裂发生在C/C复合材料/钎料界面处;若钎焊温度较高,断裂主要发生在C/C复合材料/钎料界面和钎料/TC4界面处.  相似文献   

9.
为研究钎焊温度对Ti60/Si3N4接头组织与力学性能的影响,采用Ag-28Cu共晶钎料在870~910℃温度区间,保温10 min条件下进行钎焊连接.利用扫描电子显微镜、能谱仪对钎焊接头界面组织进行分析,得到的典型接头界面组织结构为Ti60/Ti-Cu化合物/Ag(s,s)+Cu(s,s)/Ti-Cu化合物/Ti5Si3+TiN/Si3N4,并对钎焊接头的组织演变过程进行了分析.结果表明,随着钎焊温度的升高,Ti60侧的Ti-Cu化合物反应层与Si3N4陶瓷侧的Ti5Si3+TiN反应层厚度逐渐增加,Ag(s,s)与Cu(s,s)含量减少,同时,扩散至Si3N4陶瓷侧的Ti元素与液相中Cu元素反应生成Ti-Cu化合物并在Ti5Si3+TiN反应层中形核.剪切测试表明,在钎焊温度880℃,保温10 min工艺参数条件下获得的接头最大抗剪强度为61.7 MPa.  相似文献   

10.
采用AgCu28钎料实现了TC4钛合金与QCr0.8铬青铜的真空钎焊,利用SEM, EDS以及XRD等分析方法确定TC4/AgCu/QCr0.8接头的典型界面结构为TC4钛合金/CuTi +Cu3Ti2 +CuTi2/Ag(s,s) +Cu4Ti/Ag(s,s)+Cu(s,s)/QCr0.8铬青铜. 研究了工艺参数对接头组织和性能的影响. 结果表明,随着钎焊温度和保温时间的增加,钎缝中银铜共晶组织减少,钛铜化合物增多. 接头抗剪强度随钎焊温度的升高先增加后降低,在钎焊工艺参数为890 ℃/0 min时,获得最大抗剪强度449 MPa.保温时间的延长使得接头脆性钛铜化合物增多,接头性能下降,因此随保温时间延长接头抗剪强度显著降低.  相似文献   

11.
采用Cu+B钎料分别在钎焊温度890~970℃,保温时间为10min;钎焊温度为930℃,保温时间0~30min条件下,钎焊A120,陶瓷与TCA合金.利用SEM,EDS和压剪试验研究接头界面组织及力学性能.结果表明,随钎焊温度升高或保温时间的延长,Ti2(Cu,Al)2O层增厚,紧邻其侧生成连续并增厚的Ti2(Cu,Al),Ti2(Cu,Al)含量增加;Ti+Ti2(Cu,Al)含量增加,尺寸变大,分布范围逐渐变宽并向TC4合金侧迁移,TCA合金侧过共析组织区变宽.钎焊温度低于950℃时,TiB晶须主要分布在Ti2Cu晶界处的AlCu2Ti上;当钎焊温度高于950℃时,AlCu2Ti相逐渐消失,TiB晶须主要分布于Ti2Cu上.当保温时间为10min,钎焊温度为950℃时,接头最大强度为96MPa;而当钎焊温度为930℃,保温时间为20min时,接头最大强度为83MPa.关键词:Al2O3陶瓷;TC4合金;钎焊参数;界面组织;抗剪强度  相似文献   

12.
采用 Ag-28Cu 钎料对 TA8 纯钛和 BT20 钛合金的管板组合构件进行真空钎焊连接试验,分析了不同钎焊温度及保温时间对接头界面结构的影响.结果表明,接头界面结构为 BT20/钛基固溶体/Ti2Cu 化合物/银基固溶体+TiCu 化合物/Ti2Cu 化合物/钛基固溶体/TA2;随着钎焊温度的升高,银基固溶体和 TiCu 化合物逐渐消失,Ⅰ区逐渐出现较明显的树枝状生长的组织,分析为 Ti2Cu 化合物;随着连接时间的延长,Ti2Cu 化合物逐渐增加,且靠近母材的钛基固溶体层增宽,Ⅱ区最终演变成一个 Ti2Cu 反应层.
Abstract:
The vacuum brazing of TA2/BT20 titanium alloy was carried out with Ag-28Cu brazing filler metal, and the effects of brazing temperature and holding time on interface structure of the joints were diseussed. The experimental results showed that the interface structure consisted of BT20/Ti (s,s)/Ti2Cu/Ag (s,s) +TiCu/Ti2Cu/Ti (s,s)/TA2. The Ag (s,s) and TiCu compound decreased gradually with the increasing of brazing temperature and holding time, and then Ti2 Cu compound increased corresponding.And the Ti (s,s) layer gradually became thick.  相似文献   

13.
以B-Ti57CuZrNi-S为钎料,在氩气保护气氛下对TC6/TC11钛合金进行高频感应钎焊工艺实验研究。采用光学显微镜(OM)、扫描电镜(SEM)及能谱分析(EDS)等测试方法,分析气体保护流量、流态以及工艺参数对焊接界面形貌、接头组织及元素分布的影响,并测试接头的抗拉强度。结果表明,钎焊界面主要由富Ti的β-Ti固溶组织和Cu-Ti、Ni-Ti以及(Cu,Ni)Ti/Zr组成的金属间化合物相组成。钎焊接头的抗拉强度随钎焊温度的升高或保温时间的延长,呈现先升高后降低的趋势,接头最高强度可达433MPa。TC6/TC11钛合金高频感应钎焊优化工艺参数带为:焊接温度910℃~930℃,保温时间120~150 s,Ar气保护流量1 MPa。  相似文献   

14.
金刚石/铜复合材料具有低膨胀系数和高热导率等优异性能,使其成为一种理想的电子封装材料。采用97%(72Ag-28Cu)-3%Ti活性钎料对金刚石/铜复合材料和氧化铝陶瓷进行钎焊。发现活性钎料在氧化铝陶瓷和金刚石薄膜表面均具有良好的润湿性,在两者表面的平衡润湿角均小于5°。讨论了主要钎焊条件(如钎焊温度和保温时间等)对接头性能的影响。发现钎焊过程中Ti元素聚集在金刚石颗粒的表面形成TiC化合物,且TiC化合物的形貌与钎焊接头的剪切强度具有紧密联系。推测合适的TiC化合物层厚度可改善钎焊接头的剪切强度,而颗粒状的TiC化合物及过厚的TiC化合物层却会损害钎焊接头的性能。获得的最大剪切强度为117MPa。  相似文献   

15.
针对钛合金和YG8型硬质合金异种材料的真空钎焊工艺和接头可靠性问题展开研究,采用润湿性实验、金相显微镜、显微硬度计、万能拉伸试验机、扫描电子显微镜等实验及测试手段,对Ag94AlMn钎焊试样接头的微观组织结构、维氏硬度、接头剪切强度等进行试验分析。结果表明,银基钎料与钛合金、硬质合金界面冶金结合良好,焊缝表面组织均匀,无微裂纹。钎缝组织为Ag基固溶体,硬质合金母材Co、W元素和钛合金母材Ti、V元素向钎缝内扩散甚少,几乎不发生母材溶蚀;TC4与YG8真空钎焊异种金属真空钎焊,选择银基钎料以及钎焊温度920℃、保温时间10 min的工艺参数,接头剪切强度最高。  相似文献   

16.
在钎焊温度范围为1050 ~ 1125 ℃下保温10 min,采用非晶Ti-Zr-Cu-Ni-Co-Mo钎料成功地实现了Ti-47Al-2Nb-2Cr-0.15B (原子分数,%)合金钎焊连接. 运用SEM,EDS,XRD,TEM和维氏硬度仪等分析研究了铸态和箔带钎料显微组织、温度(900 ~ 1125 ℃)和保温时间(0 ~ 15 min)对铸态钎料在TiAl基合金表面上润湿铺展面积的影响,以及钎焊接头中界面显微组织和维氏硬度在不同钎焊温度下的变化规律. 结果表明,随着温度和保温时间的增加,铸态钎料在TiAl合金母材表面润湿铺展面积的增幅先增大后减小. 钎焊接头界面组织主要包括TiAl母材层,α2-Ti3Al+AlCuTi (层Ⅰ)和γ-(Ti, Zr)2(Ni, Cu)+α-(Ti, Zr)(层Ⅱ). 钎缝中各区域的硬度均随着钎焊温度的增加而增加,1125 ℃时获得最大值为872(±8) HV,主要与钎缝中生成的硬脆金属间化合物(Ti, Zr)2(Ni, Cu)和α2-Ti3Al有关.  相似文献   

17.
CVD金刚石膜的钎焊界面反应层及微结构   总被引:1,自引:0,他引:1       下载免费PDF全文
孙凤莲  赵密  李丹  谷丰 《焊接学报》2006,27(9):70-72
借助扫描电镜和电子探针,分析了金刚石与Ag-Cu-Ti活性钎料界面反应层的微观组织结构、界面新生化合物的形成机理以及焊接工艺条件对界面结构的影响,建立了钎焊接头界面结构物理模型.结果表明,在一定的钎焊工艺条件下,金刚石/钎料界面存在灰色的新生化合物TiC,与TiC相邻的是蜂窝状的TiCu相;接头断裂不仅仅发生在TiC相中,有时断裂也发生在TiCu层.钎焊加热温度、保温时间、钎料层的含Ti量对CVD金刚石厚膜与硬质合金的接头结构模型有重要影响.  相似文献   

18.
卞红  田骁  冯吉才  高峰  胡胜鹏 《焊接学报》2018,39(5):33-36,68
采用TiZrNiCu非晶钎料实现了TC4和Ti60异种钛合金的真空钎焊连接,利用扫描电子显微镜(SEM)、能谱仪(EDS)和X射线衍射仪(XRD)等分析手段研究了钎焊工艺参数对接头界面组织结构及力学性能的影响. 结果表明,TC4/TiZrNiCu/Ti60钎焊接头的典型界面结构为:TC4/α-Ti+β-Ti+(Ti,Zr)2(Ni,Cu)/Ti60. 随着钎焊温度升高或保温时间延长,片层状α+β相逐渐填充整条钎缝,(Ti,Zr)2(Ni,Cu)相含量减少且分布更加均匀. 接头室温抗拉强度随钎焊温度或保温时间的增加均先增大后减小,在990 ℃/10 min钎焊条件下所获接头抗拉强度达到最大为535.3 MPa. 断口分析结果表明,断裂位于钎缝中,断裂方式为脆性断裂.  相似文献   

19.
采用TiZrNiCu钎料来实现改良的超高温陶瓷(Cf-SiCf)/SiBCN与金属Nb的钎焊连接,研究了温度、时间对界面组织及力学性能的影响规律,对连接机理进行了分析. 结果表明,在900 ℃/20 min的工艺参数下,(Cf-SiCf)/SiBCN-Nb接头室温抗剪强度最高达到36 MPa,接头典型的界面结构为Nb/Ti-Nb固溶体/(Ti, Zr)2(Cu, Ni)/Zr5Si3 + Ti5Si3/TiC + ZrC/(Cf-SiCf)/SiBCN. Cu元素在钎焊过程中逐渐从钎料扩散陶瓷母材中,通过与SiC反应生成Cu-Si脆性化合物进一步促进(Cf-SiCf)/SiBCN陶瓷的分解,同时Cu-Si相是接头断裂路径由钎料层扩展到陶瓷侧的主要原因;保温时间过高时,陶瓷的分解程度增加,接头断裂在陶瓷内部;而温度过高时,固溶体前端与钎料层物相差异增大而引起了贯穿钎料层的裂纹.  相似文献   

20.
在真空炉中采用石墨阴模对金刚石进行适当约束的方法开展钎焊试验,实现了金刚石与钢基体之间的高强度连接及磨粒等高性的有效控制. 采用SEM对钎焊试样和金刚石表面形貌进行观察,采用EDS对金刚石表面定点和微区成分进行分析,使用超景深三维显微镜对磨粒等高性进行测量. 结果表明,液相Cu70Sn20Ti10钎料在毛细作用下可润湿包裹在石墨阴模上粘接的金刚石,且两者界面上形成TiC反应物,由此可获得钢基体对金刚石高的把持力. 钎焊过程银胶不与金刚石发生反应,同时由于银胶能够始终保持对金刚石的粘接及约束作用,所以钎焊后的磨粒等高性好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号