首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eight ruminally cannulated Holstein cows that were part of a larger lactation trial were used in 2 replicated 4 × 4 Latin squares to quantify effects of supplementing protein as urea, solvent soybean meal (SSBM), cottonseed meal (CSM), or canola meal (CM) on omasal nutrient flows and microbial protein synthesis. All diets contained (% of dry matter) 21% alfalfa silage and 35% corn silage plus 1) 2% urea plus 41% high-moisture shelled corn (HMSC), 2) 12% SSBM plus 31% HMSC, 3) 14% CSM plus 29% HMSC, or 4) 16% CM plus 27% HMSC. Crude protein was equal across diets, averaging 16.6%. The CSM diet supplied the least rumen-degraded protein and the most rumen-undegraded protein. Microbial nonammonia N flow was similar among the true protein supplements but was 14% lower in cows fed urea. In vivo ruminal passage rate, degradation rate, and estimated escape for the 3 true proteins were, respectively, 0.044/h, 0.105/h, and 29% for SSBM; 0.051/h, 0.050/h, and 51% for CSM; and 0.039/h, 0.081/h, and 34% for CM. This indicated that CSM protein was less degraded because of both a faster passage rate and slower degradation rate. Omasal flow of individual AA, branched-chain AA, essential AA, nonessential AA, and total AA all were lower in cows fed urea compared with one of the true protein supplements. Among the 3 diets supplemented with true protein, omasal flow of Arg was greatest on CSM, and omasal flow of His was greatest on CSM, intermediate on CM, and lowest on SSBM. Lower flows of AA and microbial nonammonia N explained lower yields of milk yield and milk components observed on the urea diet in the companion lactation trial. These results clearly showed that supplementation with true protein was necessary to obtain sufficient microbial protein and rumen-undegraded protein to meet the metabolizable AA requirements of high-producing dairy cows.  相似文献   

2.
Twenty-five (10 ruminally cannulated) Holstein cows averaging 82 +/- 34 d in milk were assigned to 5 x 5 Latin squares (21-d periods) and fed diets supplemented with one of four different proteins to assess effects on production, ruminal metabolism, omasal flow of N fractions, and degradation rates of protein supplements. Total mixed diets contained (dry matter basis) 44% corn silage, 22% alfalfa silage, 2% urea, and 31% concentrate. Five concentrate mixes were fed: 31% high-moisture shelled corn (HMSC; basal); 9% solvent soybean meal (SSBM), 22% HMSC; 10% expeller soybean meal (ESBM), 21% HMSC; 5.5% blood meal (BM), 25.5% HMSC; and 7% corn gluten meal (CGM), 24% HMSC. Diets averaged, respectively, 15.8, 19.1, 19.7, 20.3, and 19.3% crude protein. Feeding the basal diet reduced intake and yield of milk, fat-corrected milk (FCM), and all milk components compared to the protein-supplemented diets. Milk yield was higher for cows fed ESBM and CGM, fat yield was higher for cows fed SSBM and CGM, but FCM and protein yields were not different among cows fed supplemental protein. Based on omasal sampling, mean in vivo estimates of ruminal degradation rate for the crude protein in SSBM, ESBM, BM, and CGM was, respectively, 0.417, 0.179, 0.098, and 0.051/h (computed using passage rates observed for the small particle phase; mean = 0.14/h), and 0.179, 0.077, 0.042, and 0.026/h (computed using a passage rate of 0.06/h). The in vivo degradation rate computed for SSBM at a passage rate = 0.06/h was similar to that estimated using the inhibitor in vitro method. However, in vivo degradation rates computed at passage rate = 0.06/h for ESBM, BM, and CGM were about two, four, and three times more rapid than those estimated by inhibitor in vitro. Experimental proteins fed in this trial will be used as standards for developing in vitro methods for predicting rates of ruminal protein degradation.  相似文献   

3.
In trial 1, 15 Holsteins were fed 3 total mixed rations (TMR) with 33% neutral detergent fiber in 3 × 3 Latin squares (28-d periods). Two TMR contained (dry matter basis): 40% control alfalfa silage (CAS) or 40% ammonium tetraformate-treated alfalfa silage (TAS), 20% corn silage (CS), 33% high-moisture shelled corn (HMSC), 6% solvent soybean meal (SSBM), and 18% crude protein (CP); the third TMR contained 54% red clover silage (RCS), 6% dried molasses, 33% HMSC, 6% SSBM, and 16.3% CP. Silages differed in nonprotein N (NPN) and acid detergent insoluble N (ADIN; % of total N): 50 and 4% (CAS); 45 and 3% (TAS); 27 and 8% (RCS). Replacing CAS with TAS increased intake, yields of milk, fat-corrected milk, protein, and solids-not-fat, and apparent dry matter and N efficiency. Replacing CAS with RCS increased intake and N efficiency but not milk yield. Replacing CAS or TAS with RCS lowered milk urea N, increased apparent nutrient digestibility, and diverted N excretion from urine to feces. In trial 2, 24 Holsteins (8 ruminally cannulated) were fed 4 TMR in 4 × 4 Latin squares (28-d periods). Diets included the CAS, TAS, and RCS (RCS1) fed in trial 1 plus an immature RCS (RCS2; 29% NPN, 4% ADIN). The CAS, TAS, and RCS2 diets contained 36% HMSC and 3% SSBM and the RCS1 diet contained 31% HMSC and 9% SSBM. All TMR had 50% legume silage, 10% CS, 27% neutral detergent fiber, and 17 to 18% CP. Little difference was observed between cows fed CAS and TAS. Intakes of DM and yields of milk, fat-corrected milk, fat, protein, lactose, and solids-not-fat, and milk fat and protein content were greater on alfalfa silage vs. RCS. Blood urea N, milk urea N, ruminal ammonia, and total urinary N excretion were reduced on RCS, suggesting better N utilization on the lower NPN silage. Apparent N efficiency tended to be higher for cows fed RCS but there was no difference when N efficiency was expressed as kilograms of milk yield per kilogram of total N excreted.  相似文献   

4.
Early lactating dairy cows were used to determine whether the replacement of solvent-extracted soybean meal [SSBM; a source of rumen-degradable protein (RDP)] with expeller soybean meal (ESBM; a source of rumen-undegradable protein), or the replacement of high-moisture shelled corn (HMSC) with beet pulp (a source of soluble fiber) would be effective in improving efficiency of N usage for milk production. The study was designed as a replicated 4 × 4 Latin square with 21-d periods. Eight multiparous Holstein cows were fed, ad libitum, the following diets, which were based on alfalfa silage and HMSC, and formulated to be isocaloric: 1) basal diet without a protein supplement (negative control diet: NC); 2) NC supplemented with solvent-extracted SBM (diet SSBM); 3) NC supplemented with expeller SBM (diet ESBM); 4) SSBM in which unmolassed dried beet pulp replaced half of the HMSC (diet SSBMBP). Compared with diet NC, protein supplementation increased intake of organic matter and dry matter. Milk and milk protein yields were lower with NC but this diet resulted in the greatest efficiency of N usage for milk production (30% milk N/N intake). Supplementation with ESBM, a proven source of RUP, increased plasma concentrations of histidine and branched-chain amino acids, and reduced milk urea N concentration, but failed to improve the yields of milk or milk protein. Milk fat yield tended to decrease with RUP supplementation. Replacing part of HMSC with soluble fiber from beet pulp (SSBMBP) tended to decrease milk production compared with SSBM; the effect was due to a reduction in dry matter intake. There were no differences among diets SSBM, ESBM, or SSBMBP in urinary excretion of purine derivatives. Neither substitution of ESBM for SSBM nor partial replacement of HMSC with beet pulp altered the efficiency of N usage for milk production or manure N excretion.  相似文献   

5.
Twenty-eight (8 ruminally cannulated) lactating, multiparous Holstein cows were blocked by DIM and randomly assigned to 7 replicated 4 × 4 Latin squares (28-d periods) to investigate the effects of different dietary ratios of alfalfa silage (AS) to corn silage (CS) on production, N utilization, apparent digestibility, and ruminal metabolism. The 4 diets contained (dry matter basis): A) 51% AS, 43% rolled high-moisture shelled corn (HMSC), and 3% solvent soybean meal (SSBM); B) 37% AS, 13% CS, 39% HMSC, and 7% SSBM; C) 24% AS, 27% CS, 35% HMSC, and 12% SSBM; and D) 10% AS, 40% CS, 31% HMSC, and 16% SSBM. Dietary crude protein contents were 17.2, 16.9, 16.6, and 16.2% for diets A, B, C, and D. All 4 diets were high in energy, averaging 49% nonfiber carbohydrates and 24% neutral detergent fiber. Intake of dry matter, yield of milk, 3.5% fat-corrected milk and fat, milk fat content, and apparent digestibility of neutral detergent fiber and acid detergent fiber all decreased linearly when CS replaced AS. Effects on fiber digestion and milk fat may have been due to increasing fluctuation in ruminal pH and time the pH remained <6.0 when CS replaced AS. Milk protein content increased linearly with increasing CS, but there were no differences in protein yield. There were linear increases in apparent N efficiency and decreases in N excreted in urine and feces when CS replaced AS. Production was depressed on the diet highest in CS. Quadratic analysis indicated that milk and protein yields were maximal at dietary AS:CS ratios of, respectively, 37:13 and 31:19. No diet minimized N excretion without negatively affecting production. Diet C, with an AS:CS ratio of 24:27, was the best compromise between improved N efficiency and sustained production. Because CS is complementary with AS, it is recommended that CS be fed in AS-based diets to maintain milk yield while improving N utilization.  相似文献   

6.
Four multiparous lactating Holstein cows that were fistulated in the rumen and duodenum and that averaged 205 d in milk were used in a 4 × 4 Latin square design to evaluate the practical replacement of solvent-extracted soybean meal (SSBM) with soy protein products of reduced ruminal degradability. On a dry matter (DM) basis, diets contained 15% alfalfa silage, 25% corn silage, 34.3 to 36.9% corn grain, 19.4% soy products, 18.2% crude protein, 25.5% neutral detergent fiber, and 35.3% starch. In the experimental diets, SSBM was replaced with expeller soybean meal (ESBM); heated, xylose-treated soybean meal (NSBM); or whole roasted soybeans (WRSB) to supply 10.2% of the dietary DM. Intakes of DM (mean = 20.4 kg/d), organic matter, and starch were unaffected by the source of soy protein. Similarly, true ruminal fermentation of organic matter and apparent digestion of starch in the rumen and total tract were not altered by treatments. Intake of N ranged from 567 (WRSB) to 622 g/d (ESBM), but differences among soy protein supplements were not significant. Compared with SSBM, the ruminal outflow of nonammonia N was higher for NSBM, tended to be higher for ESBM, and was similar for WRSB. The intestinal supply of nonammonia nonmicrobial N was higher for NSBM and WRSB and tended to be higher for ESBM than for SSBM. However, no differences were detected among treatments when the flow to the duodenum of nonammonia nonmicrobial N was expressed as a percentage of N intake or nonammonia N flow. The ruminal outflow of microbial N, Met, and Lys was not altered by the source of soy protein. Data suggest that partially replacing SSBM with ESBM, NSBM, or WRSB may increase the quantity of feed protein that reaches the small intestines of dairy cows. However, significant improvements in the supply of previously reported limiting amino acids for milk production, particularly of Met, should not be expected.  相似文献   

7.
Twenty-eight Holstein cows (4 with ruminal cannulas) were blocked by days in milk into 7 groups and then randomly assigned to 1 of 7 balanced 4 × 4 Latin square diet sequences. The diets contained [dry matter (DM) basis] 20% alfalfa silage, 35% corn silage, and 45% concentrate mainly from high-moisture corn and soybean meal. Diets differed in crude protein (CP) content and source of protein supplement: diet A) 15.6% CP, 3.7% solvent-extracted soybean meal (SSBM), 4.5% expeller soybean meal (ESBM); diet B) 16.6% CP, 9.6% SSBM, 0% ESBM; diet C) 16.6% CP, 4.6% SSBM, 5.9% ESBM; and diet D) 17.6% CP, 11.7% SSBM, 0% ESBM. Each experimental period consisted of 14 d for adaptation plus 14 d for collection of production data. Sampling of ruminal digesta and spot sampling of blood, feces, and urine was done on d 26 and 27 of each period. Planned contrasts compared included diet A vs. diet B, diet B vs. diet C, and diet B vs. diet D. There were no effects of diet on most of the production traits measured. However, milk yield tended to be higher for diet B vs. A. Trends were also detected for higher DM intake and weight gain and lower milk yield/DM intake in cows fed diet D vs. diet B. Milk lactose content was higher on diets A and C than on B. Ruminal NH3 was higher on diet D vs. B, but other ruminal metabolites, apparent nutrient digestibility, and estimated bacterial CP synthesis did not differ across diets. Blood and milk urea-N were higher on diets C and D than on B; milk urea-N was higher on diet B than on A. Increasing dietary CP from 16.6% (diet B) to 17.6% (diet D) increased urinary N excretion by 54 g/d and reduced apparent N efficiency (milk N/N intake) by 2.5 percentage units, without altering yield. Under the conditions of this trial, milk production was not improved by feeding rumen-undegraded protein from ESBM or greater amounts of rumen-degraded protein from SSBM. Feeding more than 16.6% CP depressed N efficiency.  相似文献   

8.
Extrusion treated canola meal (TCM) was produced in an attempt to increase the rumen-undegraded protein fraction of canola meal (CM). The objective of this study was to evaluate the effects of replacing soybean meal (SBM) with CM or TCM on ruminal digestion, omasal nutrient flow, and performance in lactating dairy cows. To assess performance, 30 multiparous Holstein cows averaging (mean ± SD) 119 ± 23 d in milk and 44 ± 7 kg of milk/d and 15 primiparous cows averaging 121 ± 19 d in milk and 34 ± 6 kg of milk/d were blocked in a randomized complete block design with a 2-wk covariate period and 12-wk experimental period (experiment 1). Dietary ingredients differed only in protein supplements, which were SBM, CM, or TCM. All diets were formulated to contain (dry matter basis) 30% alfalfa silage, 30% corn silage, 4% soy hulls, 2.4% mineral-vitamin premix, and 16% CP. The SBM diet contained 25% high-moisture shelled corn and 8.6% SBM; the canola diets contained 22% high-moisture shelled corn and either 11.2% CM or 11.4% TCM. To assess ruminal digestion and omasal nutrient flow, 6 rumen-cannulated cows were blocked into 2 squares of 3 cows and randomly assigned within blocks to the same 3 dietary treatments as in experiment 1 in a replicated 3 × 3 Latin square design (experiment 2). Data were analyzed using the MIXED procedure of SAS (SAS Institute, Cary, NC). Orthogonal contrasts were used to compare effects of different protein supplements: SBM versus CM + TCM and CM versus TCM. In experiment 1, compared with SBM, apparent total-tract digestibilities of dry matter and nutrients were greater in cows fed both CM diets, and there was a tendency for nutrient digestibilities to be higher in cows fed CM compared with TCM. Diets did not affect milk yield and milk components; however, both canola diets decreased urinary urea N (% of total urinary N), fecal N (% of total N intake), and milk urea N concentration. In experiment 2, compared with SBM, both canola diets increased N intake and tended to increase rumen-degraded protein supply (kg/d) and N truly digested in the rumen (kg/d). Diets did not affect ruminal digestibility, efficiency of microbial protein synthesis, and rumen-undegraded protein flow among diets. Results from this experiment indicate that replacing SBM with CM or TCM in diets of lactating cows improved digestibility and may reduce environmental impact. Moreover, under the conditions of the present study, treating CM by extrusion did not improve CM utilization.  相似文献   

9.
Effectiveness of low level monensin supplementation on N utilization in lactating dairy cows fed alfalfa silage was assessed using 48 multiparous Holsteins. Cows were fed a covariate diet [% of dry matter (DM): 56% alfalfa silage, 39% ground high moisture corn, 3% soybean meal, 1% ground corn, 1% vitamin-mineral supplements] for 2 wk, then grouped by days in milk into blocks of 4. Cows were randomly assigned within blocks to 1 of 4 diets that were fed for 10 wk: 1) control (covariate diet), 2) control plus 3% fish meal (replacing DM from high moisture corn), 3) monensin (10 mg/kg DM), and 4) monensin plus 3% fish meal. Diets 1 and 3 averaged 16.7% crude protein (25% from free AA in alfalfa silage); diets 2 and 4 averaged 18.5% crude protein. Monensin intake averaged 16 mg/d on diets 1 and 2 (due to contamination) and 248 mg/d on diets 3 and 4. There was no effect of fish meal or monensin on DM intake. However, weight gain and yield of milk, protein, and SNF increased with fish meal feeding, indicating metabolizable protein limited production. Feeding monensin increased blood glucose but reduced yield of 3.5% fat-corrected milk, milk fat content and yield, and milk protein content and yield. Apparent N efficiency was greatest on monensin (diet 3) but lowest on monensin plus fish meal (diet 4). Fish meal reduced blood glucose concentration and apparent N efficiency, and increased concentrations of milk and blood urea. Monensin increased ruminal propionate concentration and decreased concentration of acetate and butyrate and acetate:propionate in ruminally cannulated cows fed the experimental diets. However, these changes were small, suggesting that too little monensin was fed. Fish meal reduced ruminal total amino acid (AA) but monensin did not alter ruminal NH(3) or total AA. Both fish meal and monensin increased NH(3) formation from casein AA using ruminal inoculum from the cannulated cows. There was no evidence from this trial that feeding 250 mg of monensin per day to lactating cows improved N utilization by reducing ruminal catabolism of the large amounts of free AA in alfalfa silage.  相似文献   

10.
Two feeding trials evaluated several byproducts from commercial amino acid fermentations as N supplements for lactating cows. Trial 1 was a replicated 5 x 5 Latin square that used 2-wk periods and 25 Holstein cows (five with ruminal cannulae) fed diets containing [dry matter (DM) basis] 28% alfalfa silage, 31% corn silage, 28% high moisture ear corn plus 4 percentage units of crude protein (CP) from: soybean meal, urea, commercial fermentation byproduct 1 or 2, or a blend of fermentation byproducts plus wheat middlings. Diets averaged 15.1% CP and 32% neutral detergent fiber. Intake of DM, body weight (BW) gain, and yield of milk and milk components were greatest for cows fed soybean meal; animal performance was similar with urea, byproduct 1 and the byproduct blend. Intake, BW change, and yield of milk and protein when cows were fed byproduct 2 were lower than when fed urea. Urine output (estimated with creatinine in spot urine samples) was greater on fermentation byproduct 1 and the byproduct blend. There were no differences due to N source in microbial synthesis (based on estimated purine derivative excretion), in situ digestion of alfalfa hay DM, or molar proportions of ruminal volatile fatty acids. Trial 2 was a replicated 5 x 5 Latin square using 2-wk periods and 10 Holstein cows fed diets containing (DM basis) 37% alfalfa silage, 28% corn silage, 29% high moisture ear corn plus 2 percentage units of CP from urea, fermentation byproduct 1, or one of three blends of fermentation byproducts plus wheat middlings. Except for greater DM intake in cows fed the byproduct blends, performance and urinary metabolite excretion did not differ because of N supplement. Relative to other fermentation byproducts and urea, byproduct 1 resulted in reduced milk urea N in both trials. Under the conditions of these trials, fermentation byproducts were less effective than soybean meal, and no more effective than urea, as N supplements.  相似文献   

11.
Twenty-eight (8 with ruminal cannulas) lactating Holstein cows were assigned to seven 4 × 4 Latin squares in a 16-wk trial to study the effects on production and ruminal metabolism of feeding differing proportions of rumen-degraded protein (RDP) from soybean meal and urea. Diets contained [dry matter (DM) basis] 40% corn silage, 15% alfalfa silage, 28 to 30% high-moisture corn, plus varying levels of ground dry shelled corn, solvent- and lignosulfonate-treated soybean meal, and urea. Proportions of the soybean meals, urea, and dry corn were adjusted such that all diets contained 16.1% crude protein and 10.5% RDP, with urea providing 0, 1.2, 2.4, and 3.7% RDP (DM basis). As urea supplied greater proportions of RDP, there were linear decreases in DM intake, yield of milk, 3.5% fat-corrected milk, fat, protein, and solids-not-fat, and of weight gain. Milk contents of fat, protein, and solids-not-fat were not affected by source of RDP. Replacing soybean meal RDP with urea RDP resulted in several linear responses: increased excretion of urinary urea-N and concentration of milk urea-N, blood urea-N, and ruminal ammonia-N and decreased excretion of fecal N; there was also a trend for increased excretion of total urinary N. A linear increase in neutral detergent fiber (NDF) digestibility, probably due to digestion of NDF-N from lignosulfonate-treated soybean meal, was observed with greater urea intake. Omasal sampling revealed small but significant effects of N source on measured RDP supply, which averaged 11.0% (DM basis) across diets. Increasing the proportion of RDP from urea resulted in linear decrease in omasal flow of dietary nonammonia N (NAN) and microbial NAN and in microbial growth efficiency (microbial NAN/unit of organic matter truly digested in the rumen). These changes were paralleled by large linear reductions in omasal flows of essential, nonessential, and total amino acids. Overall, these results indicated that replacing soybean meal RDP with that from urea reduced yield of milk and milk components, largely because of depressed microbial protein formation in the rumen and that RDP from nonprotein-N sources was not as effective as RDP provided by true protein.  相似文献   

12.
Eight ruminally cannulated multiparous Holstein cows that were part of a larger production trial were used to study the effects of varying dietary ratios of alfalfa silage (AS) to corn silage (CS) on omasal flow of nutrients and microbial protein. Cows were blocked by DIM and randomly assigned to 2 replicated 4 × 4 Latin squares (28-d periods). Diets fed contained (dry matter basis): A) 51% AS, 43% rolled high-moisture shelled corn (HMSC), and 3% solvent soybean meal (SSBM); B) 37% AS, 13% CS, 39% HMSC, and 7% SSBM; C) 24% AS, 27% CS, 35% HMSC, and 12% SSBM; or D) 10% AS, 40% CS, 31% HMSC, and 16% SSBM. Crude protein (CP) contents were 17.2, 16.9, 16.6, and 16.2% for diets A, B, C, and D. All 4 diets were high in energy, averaging 49% nonfiber carbohydrates and 24% neutral detergent fiber. Total microbial nonammonia nitrogen flow was lower on diet D (423 g/d) compared with diets A (465 g/d), B (479 g/d), and C (460 g/d). A significant quadratic effect indicated that microbial protein synthesis was maximal at 38% AS. Supply of rumen-degraded protein decreased linearly from 3,068 g/d (diet A) to 2,469 g/d (diet D). Omasal flow of rumen-undegraded protein did not differ among diets and averaged 1,528 g/d. However, when expressed as a percentage of dry matter intake, rumen-undegraded protein increased linearly from 5.59% (diet A) to 6.13% (diet D), probably because CP from SSBM was more resistant to degradation than CP from AS. Essential AA flow was lowest on diet D, and Lys flow tended to be lower on diet D, which may explain the lower milk and protein yields observed on that diet.  相似文献   

13.
Sugar supplementation can stimulate rumen microbial growth and possibly fiber digestibility; however, excess ruminal carbohydrate availability relative to rumen-degradable protein (RDP) can promote energy spilling by microbes, decrease rumen pH, or depress fiber digestibility. Both RDP supply and rumen pH might be altered by forage source and monensin. Therefore, the objective of this study was to evaluate interactions of a sugar source (molasses) with monensin and 2 forage sources on rumen fermentation, total tract digestibility, and production and fatty acid composition of milk. Seven ruminally cannulated lactating Holstein cows were used in a 5 × 7 incomplete Latin square design with five 28-d periods. Four corn silage diets consisted of 1) control (C), 2) 2.6% molasses (M), 3) 2.6% molasses plus 0.45% urea (MU), or 4) 2.6% molasses plus 0.45% urea plus monensin sodium (Rumensin, at the intermediate dosage from the label, 16 g/909 kg of dry matter; MUR). Three chopped alfalfa hay diets consisted of 1) control (C), 2) 2.6% molasses (M), or 3) 2.6% molasses plus Rumensin (MR). Urea was added to corn silage diets to provide RDP comparable to alfalfa hay diets with no urea. Corn silage C and M diets were balanced to have 16.2% crude protein; and the remaining diets, 17.2% crude protein. Dry matter intake was not affected by treatment, but there was a trend for lower milk production in alfalfa hay diets compared with corn silage diets. Despite increased total volatile fatty acid and acetate concentrations in the rumen, total tract organic matter digestibility was lower for alfalfa hay-fed cows. Rumensin did not affect volatile fatty acid concentrations but decreased milk fat from 3.22 to 2.72% in corn silage diets but less in alfalfa hay diets. Medium-chain milk fatty acids (% of total fat) were lower for alfalfa hay compared with corn silage diets, and short-chain milk fatty acids tended to decrease when Rumensin was added. In whole rumen contents, concentrations of trans-10, cis-12 C18:2 were increased when cows were fed corn silage diets. Rumensin had no effect on conjugated linoleic acid isomers in either milk or rumen contents but tended to increase the concentration of trans-10 C18:1 in rumen samples. Molasses with urea increased ruminal NH3-N and milk urea N when cows were fed corn silage diets (6.8 vs. 11.3 and 7.6 vs. 12.0 mg/dL for M vs. MU, respectively). Based on ruminal fermentation characteristics and fatty acid isomers in milk, molasses did not appear to promote ruminal acidosis or milk fat depression. However, combinations of Rumensin with corn silage-based diets already containing molasses and with a relatively high nonfiber carbohydrate:forage neutral detergent fiber ratio influenced biohydrogenation characteristics that are indicators of increased risk for milk fat depression.  相似文献   

14.
This study investigated the effects of feeding solvent-extracted canola meal (CM), extruded soybean meal (ESBM), or solvent-extracted soybean meal (SSBM) on an equivalent crude protein basis on performance, plasma AA profiles, enteric gas emissions, milk fatty acids, and nutrient digestibility in lactating dairy cows. Fifteen Holstein cows (95 ± 20 d in milk) were used in a replicated 3 × 3 Latin square design experiment with 3 periods of 28 d each. Treatments were 3 diets containing 17.1% CM, 14.2% ESBM, or 13.6% SSBM (dry matter basis). Vegetable oil was added (canola oil for CM or soybean oil for SSBM) to equalize the ether extract concentration of the diets. Rumen-protected Met was supplemented targeting digestible Met supply of 2.2% of metabolizable protein in all diets. Canola meal increased dry matter intake (DMI) by 5.9 and 8.9% in comparison with ESBM and SSBM, respectively. Milk urea nitrogen was lowest in CM, followed by SSBM, and was highest for ESBM. No differences were observed in feed efficiency, energy-corrected milk yield, and milk composition or component yields among treatments. Cows fed CM emitted less enteric CH4 per kg of DMI compared with both ESBM and SSBM, but CH4 emission intensity (CH4 per kg of energy-corrected milk) was similar among treatments. In summary, replacement of ESBM or SSBM with CM, on an equal crude protein basis, in the diet of lactating dairy cows enhanced DMI, but yields of energy-corrected milk and milk components and feed efficiency were similar among treatments.  相似文献   

15.
The growing demand by humans for monounsaturated vegetable oils has provided canola meal (CM) for use in dairy diets because it possesses an excellent nitrogen profile for rumen microbes. Six midlactation cows were used in a replicated 3 × 3 Latin square design with 3 periods of 20 d each. Treatments included diets with 1) CM, 2) 50% CM + 50% cottonseed meal (CSM), and 3) CSM. Total crude protein (CP), nonprotein nitrogen, and rapidly degradable true protein (% of CP) were greater in CM than in CSM. The neutral and acid detergent fibers, slowly degradable true protein, and unavailable CP were lower in CM than in CSM. Daily feeding of 3.4 kg of CM instead of 5.6 kg of CSM enhanced milk percentage of protein and SNF, and improved total tract digestibility of dry matter and CP. Therefore, CM offers an economical substitute for CSM in midlactation diets when commercial access, cost, and quality of CSM are variable.  相似文献   

16.
Previous research has shown that cows fed ≥24% of the diet dry matter (DM) as field peas decreased milk yield as well as concentration and yield of milk protein, possibly due to reduced DM intake and limited supply of Lys and Met. Twelve multiparous and 4 primiparous lactating Holstein cows were randomly assigned to 1 of 4 diets in a replicated 4 × 4 Latin square design. The diets contained (DM basis) 34.8% corn silage, 15.2% grass-legume silage, 5.9% roasted soybean, 2.4% mineral-vitamin premix, 2.0% alfalfa pellets, and either (1) 36% ground corn, 2.4% soybean meal, and 1.3% urea (UR), (2) 29.7% ground corn, 9.8% soybean meal, 0.13% ruminally protected (RP) Lys, and 0.07% RP-Met (CSBAA), (3) 25% ground field peas, 12.3% ground corn, and 2.4% soybean meal (FP), or (4) FP supplemented with 0.15% RP-Lys and 0.05% RP-Met (FPAA). Our objective was to test the effects of FP versus UR, FPAA versus CSBAA, and FPAA versus FP on milk yield and composition, N utilization, nutrient digestibility, ruminal fermentation profile, and plasma concentration of AA. Milk yield did not differ across diets. Compared with cows fed UR, those fed FP had greater DM intake, concentration and yield of milk true protein, apparent total-tract digestibility of fiber, urinary excretion of purine derivatives, and concentrations of total volatile fatty acids in the rumen and Lys in plasma, and less milk urea N and ruminal NH3-N. The concentration of milk urea N, as well as the concentration and yield of milk fat increased in cows fed FPAA versus CSBAA. Moreover, cows fed FPAA had greater ruminal concentration of total volatile fatty acids, increased proportions of acetate and isobutyrate, and decreased proportions of propionate and valerate than those fed CSBAA. The plasma concentrations of His, Leu, and Phe decreased, whereas plasma Met increased and plasma Lys tended to increase in cows fed FPAA versus CSBAA. Concentration of milk true protein, but not yield, was increased in cows fed FPAA versus FP. However, cows fed FPAA showed decreased concentrations of His and Leu in plasma compared with those fed FP. Overall, compared with the CSBAA diet, feeding FPAA did not negatively affect milk yield and milk protein synthesis. Furthermore, RP-Lys and RP-Met supplementation of the FP diet did not improve milk yield or milk protein synthesis, but decreased urinary urea N excretion.  相似文献   

17.
The objective of this study was to compare triticale dried distillers grains plus solubles (TDDGS) as a source of dietary N with other high-protein feeds commonly used in North America: corn dried distillers grains plus solubles (CDDGS), canola meal (CM), and soybean meal (SBM). Rumen degradable protein (% of crude protein, CP) after 16 h of incubation in the rumen was higher for CDDGS and TDDGS (69.3% and 64.5%, respectively) than for CM (62.2%) and SBM (53.0%). For the lactation study, experimental diets were formulated to supply 30% of dietary CP from TDDGS, CDDGS, CM, or SBM. These diets contained 22.3% forage neutral detergent fiber and approximately 19.2% CP and were fed to 12 multiparous Holstein cows (130 ± 40 d in milk) in a 4 × 12 Latin rectangle design with 21-d periods. Neither dry matter intake nor milk yield was affected by treatment, averaging 25.5 and 35.5 kg/d, respectively. Plasma concentrations of Arg, Lys, and Thr were greater for cows fed CM or SBM compared with those fed TDDGS or CDDGS, whereas plasma concentrations of Leu and Phe were lower for cows fed CM or SBM compared with those fed TDDGS or CDDGS. Cows fed CDDGS had lower milk CP yield compared with cows fed CM (1.07 vs. 1.16 kg/d). Contrarily, milk CP and milk lactose yields were not different for cows fed TDDGS compared with CM or SBM. These data suggest that TDDGS can replace CM or SBM in the diets of lactating dairy cows without adverse effects on production. Furthermore, although dried distillers grain has been generally accepted as a feed high in ruminal undegradable protein, CDDGS and TDDGS used in the present study had high in situ ruminal degradable crude protein. Further investigation is warranted to determine the extent of variation in ruminal protein degradation among different types of dried distillers grains.  相似文献   

18.
Responses to daily abomasal infusions of 400 g sodium caseinate, 400 g hydrolyzed casein, or 11.3 g L-methionine plus 30.1 g L-lysine were compared in eight Holstein cows fed diets with estimated ruminal protein degradabilities of 70 and 60.%. Basal diets contained corn silage and corn with either soybean meal or 66.7:33.3 soybean meal:corn gluten meal added. Infusion with Methionine plus lysine increased milk protein content when cows fed either diet but increased milk fat content and yield only when the soybean meal diet was fed. Sodium caseinate increased milk and milk protein production and decreased milk fat percentage. Concentration of total essential amino acids, branched chain amino acids, and urea cycle amino acids were increased by the infusion of both casein sources. Methionine-lysine infusion increased plasma lysine and taurine, a metabolite of methionine, suggesting that absorbed methionine was extensively metabolized. Results demonstrate an impact of both ruminal degradability of dietary protein and form of infused protein on amino acid nutrition of lactating daily cows.  相似文献   

19.
Two Latin square trials, using 21 or 24 multiparous lactating Holstein cows, compared the feeding value of red clover and alfalfa silages harvested over 2 yr. Red clover silages averaged 2 percentage units lower in crude protein (CP) and more than 2 percentage units lower in neutral detergent fiber and acid detergent fiber than did alfalfa silage. In trial 1, diets were formulated to 60% dry matter (DM) from alfalfa, red clover silage, or alfalfa plus red clover silage (grown together); CP was adjusted to about 16.5% by adding soybean meal, and the balance of dietary DM was from ground high moisture ear corn. Nonprotein N in red clover and alfalfa-red clover silages was 80% of that in alfalfa silage. Although DM intake was 2.5 and 1.3 kg/d lower on red clover and alfalfa plus red clover, yield of milk and milk components was not different among diets. In trial 2, four diets containing rolled high moisture shelled corn were formulated to 60% DM from alfalfa or red clover silage, or 48% DM from alfalfa or red clover silage plus 12% DM from corn silage. The first three diets contained 2.9% soybean meal, and the red clover-corn silage diet contained 5.6% soybean meal; the 60% alfalfa diet contained 18.4% CP, and the other three diets averaged 16.5% CP. Nonprotein N in red clover silage was 62% of that in alfalfa silage. Intake of DM was about 2 (no corn silage) and 1 kg/d (plus corn silage) lower on red clover. Yield of milk and milk components was not different among the first three diets; however, yields of milk, total protein, and true protein were higher on red clover-corn silage with added soybean meal. Replacing alfalfa with red clover improved feed and N efficiency and apparent digestibility of DM, organic matter, neutral detergent fiber, acid detergent fiber, and hemicellulose in both trials. Net energy of lactation computed from animal performance data was 18% greater in red clover than alfalfa. Data on milk and blood urea and N efficiency suggested better N utilization on red clover.  相似文献   

20.
Two lactation trials were conducted comparing the feeding value of silages made from birdsfoot trefoil (BFT, Lotus corniculatus L.) that had been selected for low (BFTL), medium (BFTM), and high (BFTH) levels of condensed tannins (CT) to an alfalfa silage (AS) when fed as the principal forage in total mixed rations. Diets also included corn silage, high-moisture shelled corn, soybean meal, soy hulls, and supplemental fat. In trial 1, 32 lactating Holstein cows were blocked by days in milk, assigned to treatment sequences in 8 balanced 4 × 4 Latin squares, and fed 50% dietary dry matter from AS or 1 of 3 BFT silages containing 0.6, 1.2, or 1.7% CT. Diets averaged 17.5 to 19.5% crude protein and 26% neutral detergent fiber on a dry matter basis. Data were collected over the last 2 wk of each 4-wk period. Intakes were 1.3 to 2.8 kg of dry matter/d greater on BFT than on AS and cows gained 0.5 kg of body weight/d on BFT diets while losing 0.14 kg of body weight/d on the AS diet; this resulted in greater milk per dry matter intake (DMI) on AS. Linear effects indicated true protein yield and milk urea nitrogen declined with increasing CT concentration and quadratic effects indicated DMI, energy-corrected milk, and fat yield were increased at intermediate CT concentration. True protein yield and apparent N-efficiency were greater, and milk urea nitrogen lower, on all BFT diets than on AS. In trial 2, 50 lactating Holstein cows were fed a covariate AS diet for 2 wk and then blocked by parity and days in milk and randomly assigned to 1 of 5 diets that were fed continuously for 12 wk. Diets contained (dry matter basis) 48% AS, 16% AS plus 32% of 1 of 3 BFT silages with 0.5, 0.8, or 1.5% CT, or 48% of an equal mixture of each BFT silage. Diets averaged 16.5% crude protein and 30% neutral detergent fiber. Intake and milk yield tended to be lower on AS than BFT, but body weight gains averaged 0.6 kg/d on all diets. Cows fed any of the BFT silages had reduced milk urea nitrogen and ruminal ammonia and reduced urinary N excretion. Feeding the BFT mixture reduced concentrations of milk true protein and milk urea nitrogen and depressed apparent nutrient digestibility. Among diets containing the individual BFT silages, linear reductions in DMI and yield of milk, fat, true protein, lactose, and SNF were observed with increasing CT concentration. By contrast, a previous trial with the same BFT populations showed that substituting BFTH silage containing 1.6% CT for AS in rations containing 60% silage dry matter had no effect on intake, increased yield of milk, energy-corrected milk and milk components, elevated protein use-efficiency, but with a more modest reduction in milk urea nitrogen and urinary N excretion. Silage analyses suggested that the inconsistent responses among trials were related to growth environment or ensiling effects that altered tannin-protein interactions in BFT silage. Differences in diet formulation among trials may have also influenced responses. Results from the current and previous trials indicate further work is needed to identify optimum tannin levels in forages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号