首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of tetrasodium pyrophosphate (TSPP) on the properties of yogurt gels was investigated. Various concentrations (0.05 to 0.2%) of TSPP were added to preheated (85°C for 30 min) reconstituted skim milk, which was readjusted to pH 6.50. Milk was inoculated with 2% starter culture and incubated at 42°C until the pH reached 4.6. Acid-base buffering profiles of milk and total and soluble calcium levels were measured. Turbidity measurements were used to indicate changes in casein dispersion. Storage modulus (G′) and loss tangent (LT) values of yogurts were monitored during fermentation using dynamic oscillatory rheology. Large deformation properties of gels were also measured. Microstructural properties of yogurt were observed using fluorescence microscopy. The addition of TSPP resulted in the disappearance of the buffering peak during acid titration at pH ∼5.1 that is due to the solubilization of colloidal calcium phosphate (CCP), and a new peak was observed at lower pH values (pH 4.0-4.5). The buffering peak at pH 6.0 during base titration virtually disappeared with addition of TSPP and a new peak appeared at pH ∼4.8. The addition of TSPP reduced the soluble Ca content of milk and increased casein-bound Ca values. The addition of up to 0.125% TSPP resulted in a reduction in turbidity because of micelle dispersion but at 0.15%, turbidity increased and these samples exhibited a time-dependent increase in turbidity because of aggregation of casein particles. Gels made with 0.20% TSPP were very weak and had a very high gelation pH (6.35), probably due to complete dispersion of the micelle structure in this sample. The LT value of gels at pH 5.1 decreased with an increase in TSPP concentration, probably due to the loss of CCP with the addition of TSPP. The G′ values at pH 4.6 of gels made with ≤0.10% TSPP were not significantly different but the addition of ≥0.125% TSPP significantly decreased G′ values. The addition of 0.05 to 0.125% TSPP to milk resulted in a reduction in the yield stress values of yogurt compared with yogurt made without TSPP. Greater TSPP levels (>0.125%) markedly reduced the yield stress values of yogurt. Lowest whey separation levels were observed in yogurts made with 0.10% TSPP. High TSPP levels (>0.10%) greatly increased the apparent pore size of gels. Addition of very low levels of TSPP to milk for yogurt manufacture may be useful in reducing the whey separation defect, but at TSPP concentrations ≥0.125% very weak gels were formed.  相似文献   

2.
The effect of increasing the colloidal calcium phosphate (CCP) content on the physical, rheological, and microstructural properties of yogurt was investigated. The CCP content of heated (85°C for 30 min) milk was increased by increasing the pH by the addition of alkali (NaOH). Alkalized milk was dialyzed against pasteurized skim milk at approximately 4°C for 72 h to attempt to restore the original pH and soluble Ca content. By adjustment of the milk to pH values 7.45, 8.84, 10.06, and 10.73, the CCP content was increased to approximately 107, 116, 123, and 128%, respectively, relative to the concentration in heated milk. During fermentation of milk, the storage modulus (G′) and loss tangent values of yogurts were measured using dynamic oscillatory rheology. Large deformation rheological properties were also measured. The microstructure of yogurt was observed using fluorescence microscopy, and whey separation was determined. Acid-base titration was used to evaluate changes in the CCP content in milk. Total Ca and casein-bound Ca increased with an increase in the pH value of alkalization. During acidification, elevated buffering occurred in milk between pH values 6.7 to 5.2 with an increase in the pH of alkalization. When acidified milk was titrated with alkali, elevated buffering occurred in milk between pH values 5.6 to 6.4 with an increase in the pH of alkalization. The high residual pH of milk after dialysis could be responsible for the decreased contents of soluble Ca in these milks. The pH of gelation was higher in all dialyzed samples compared with the heated control milk, and the gelation pH was higher with an increase in CCP content. The sample with highest CCP content (128%) exhibited gelation at very high pH (6.3), which could be due to alkali-induced CN micellar disruption. The G′ values at pH 4.6 were similar in gels with CCP levels up to 116%; at higher CCP levels, the G′ values at pH 4.6 greatly decreased. Loss tangent values at pH 5.1 were similar in all samples except in gels with a CCP level of 128%. For dialyzed milk, the whey separation levels were similar in gels made from milk with up to 107% CCP but increased at higher CCP levels. Microstructure of yogurt gels made from milk with 100 to 107% CCP was similar but very large clusters were observed in gels made from milk with higher CCP levels. By dialyzing heated milk against pasteurized milk, we may have retained some heat-induced Ca phosphate on micelles that normally dissolves on cooling because, during dialysis, pasteurized milk provided soluble Ca ions to the heated milk system. Yogurt texture was significantly affected by increasing the casein-bound Ca (and total Ca) content of milk as well as by the alkalization procedure involved in that approach.  相似文献   

3.
Casein interactions play an important role in the textural properties of yogurt. The objective of this study was to investigate how the concentration of insoluble calcium phosphate (CCP) that is associated with casein particles and the length of fermentation time influence properties of yogurt gels. A central composite experimental design was used. The initial milk pH was varied by preacidification with glucono-δ-lactone (GDL), and fermentation time (time to reach pH 4.6 from the initial pH) was altered by varying the inoculum level. We hypothesized that by varying the initial milk pH value, the amount of CCP would be modified and that by varying the length of the fermentation time we would influence the rate and extent of solubilization of CCP during any subsequent gelation process. We believe that both of these factors could influence casein interactions and thereby alter gel properties. Milks were preacidified to pH values from 6.55 to 5.65 at 40°C using GDL and equilibrated for 4 h before inoculation. Fermentation time was varied from 250 to 500 min by adding various amounts of culture at 40°C. Gelation properties were monitored using dynamic oscillatory rheology, and microstructure was studied using fluorescence microscopy. Whey separation and permeability were analyzed at pH 4.6. The preacidification pH value significantly affected the solubilization of CCP. Storage modulus values at pH 4.6 were positively influenced by the preacidification pH value and negatively affected by fermentation time. The value for the loss tangent maximum during gelation was positively affected by the preacidification pH value. Fermentation time positively affected whey separation and significantly influenced the rate of CCP dissolution during fermentation, as CCP dissolution was a slow process. Longer fermentation times resulted in greater loss of CCP at the pH of gelation. At the end of fermentation (pH ∼4.6), virtually all CCP was dissolved. Preacidification of milk increased the solubilization of CCP, increased the early loss of CCP crosslinks, and produced weak gels. Long fermentation times allowed more time for solubilization of CCP during the critical gelation stage of the process and increased the possibility of greater casein rearrangements; both could have contributed to the increase in whey separation.  相似文献   

4.
Lactic acid fermentation during the production of skim milk and whole fat set-style yogurt was continuously monitored by measuring pH. The modified Gompertz model was successfully applied to describe the pH decline and viscosity development during the fermentation process. The viscosity and incubation time data were also fitted to linear models against ln(pH). The investigation of the yogurt quality improvement practices included 2 different heat treatments (80°C for 30 min and 95°C for 10 min), 3 milk protein fortifying agents (skim milk powder, whey powder, and milk protein concentrate) added at 2.0%, and 4 hydrocolloids (κ-carrageenan, xanthan, guar gum, and pectin) added at 0.01% to whole fat and skim yogurts. Heat treatment significantly affected viscosity and acetaldehyde development without influencing incubation time and acidity. The addition of whey powder shortened the incubation time but had a detrimental effect on consistency, firmness, and overall acceptance of yogurts. On the other hand, addition of skim milk powder improved the textural quality and decreased the vulnerability of yogurts to syneresis. Anionic stabilizers (κ-carrageenan and pectin) had a poor effect on the texture and palatability of yogurts. However, neutral gums (xanthan and guar gum) improved texture and prevented the wheying-off defect. Skim milk yogurts exhibited longer incubation times and higher viscosities, whereas they were rated higher during sensory evaluation than whole fat yogurts.  相似文献   

5.
Directly acidified cheeses with different insoluble Ca (INS Ca) contents were made to test the hypothesis that the removal of INS Ca from casein micelles (CM) would directly contribute to the softening and flow behavior of cheese at high temperature. Skim milk was directly acidified with dilute lactic acid to pH values of 6.0, 5.8, 5.6, or 5.4 to remove INS Ca (pH trial). Lowering milk pH also reduced protein charge repulsion, which could influence melt. In a second treatment, EDTA (0, 2, 4, or 6 mM) was added to skim milk that was subsequently acidified to pH 6.0 (EDTA trial). Both types of milks were then made into directly acidified cheese. Cheese properties were determined at approximately 10 h after pressing to reduce possible confounding effects of proteolysis. The INS Ca content was determined by the acid-base titration method. Dynamic low-amplitude oscillatory rheology was used to measure the viscoelastic properties of cheese during heating from 5 to 80°C. The composition of all cheeses was as similar as possible, with cheese-making procedures being modified to obtain similar moisture contents (∼55%). Insoluble Ca contents of cheeses significantly decreased with a reduction in pH or with the addition of EDTA to skim milk. The pH values of cheeses in the pH trial varied, but all cheeses in the EDTA trial had similar pH values (∼5.73). In the pH trial, the reduction in cheese pH and consequent decrease in INS Ca content resulted in a reduction in the G′ values of cheeses at 20°C. In contrast, the G′ values at 20°C in cheeses from the EDTA trial increased with EDTA addition up to 4 mM EDTA. The G′ values at 70°C of cheeses from the pH trial decreased with a decrease in cheese pH, and a similar decrease was observed in the G′ values of cheese from the EDTA trial with an increase in EDTA concentration even though these cheeses had a similar pH value. In both trials, loss tangent (LT) values increased with temperatures >30°C and reached a maximum at approximately 70°C. In the pH trial, LT values at 70°C increased from 1.50 to 4.24 with a decrease in cheese pH from 5.78 to 5.21. The LT values increased from 1.43 to 3.23 with an increase in the concentration of added EDTA from 0 to 6 mM. In the EDTA trial, the decrease in G′ and increase in LT values at 70°C were due to the reduction in INS Ca content, because the pH values of these cheeses were the same. It can be concluded that the loss of INS Ca increases the melting in cheeses that have the same pH and gross chemical composition, and removal of INS Ca can even make cheese at high pH (∼5.73) exhibit reasonable melt characteristics.  相似文献   

6.
The effect of high-pressure homogenization (HPH) alone or in combination with a thermal treatment (TT) was investigated for the manufacture of acid gels from skim milk. Raw skim milk was subjected to HPH (0 to 350 MPa) or a TT (90°C, 5 min), or both, in the following processing combinations: 1) HPH, 2) HPH followed by TT, 3) TT followed by HPH, 4) TT, and 5) raw milk (control). After treatments, L* (lightness) values were measured, and then skim milk was acidified with 3% glucono-δ-lactone and rheological properties (G′ and gelation time), and whey holding capacity was evaluated. Treatments in which HPH and TT were combined showed greater L* values than those in which just HPH was applied. In all treatments, the L* values decreased as the pressure was increased up to 300 MPa with little change afterward. Gelation times were lower when HPH was combined with TT compared with the acid skim milk gels that were just pressure treated. The final G′ in gels obtained from skim milk subjected to the combined process (HPH and TT) was greater and pressure-dependent compared with all other gels. A maximum G′ (∼320 Pa) was observed with skim milk subjected to a combination of thermal processing before or after HPH at 350 MPa. Acid gels obtained from HPH milk at 350 MPa showed a linear decrease in whey holding capacity over time, retaining 20% more whey after centrifugation for 25 min compared with samples treated at lower pressures and all other treatments. Our results suggest that HPH in combination with TT can be used to improve the rheological properties and stability of yogurt, thus decreasing the need for additives.  相似文献   

7.
Rennet-induced gels were made from milk acidified to various pH values or milk at pH 6.0 that had added EDTA. The objective was to examine the effect of removing insoluble Ca (INS Ca) from casein micelles (CM) on rennet gelation properties. For the pH trial, diluted lactic acid was added to reconstituted skim milk to decrease the pH to 6.4, 6.0, 5.8, 5.6, and 5.4. For the EDTA trial, EDTA was slowly added (0, 2, 4, and 6 mM) to reconstituted skim milk, and the final pH values were subsequently adjusted to pH 6.0. Dynamic low amplitude oscillatory rheology was used to monitor gel development. The Ca content of CM and rennet wheys made from these milks was measured using inductively coupled plasma spectroscopy. The INS Ca content of milk was altered by the acidification pH values or level of EDTA added. In all samples, the storage modulus (G′) exhibited a maximum (GM), with a decrease in G′ during longer aging times. Gels made at pH 6.4 had higher GM compared with gels made at pH 6.7 probably due to the reduction in electrostatic repulsion, whereas the INS Ca content only slightly decreased. The highest GM value of gels was observed at pH 6.4 and the GM value decreased with decreasing pH from 6.4 to 5.4. This was due to an excessive loss of INS Ca from CM. There was a decrease in GM with the increase in the concentration of added EDTA, which was probably due to the loss of colloidal calcium phosphate, which weakens the integrity of CM. Loss tangent (LT) values at GM increased with a reduction in milk pH and the addition of EDTA to milk. Rennet gels at the point of the GM were subjected to constant low shearing to fracture the gels. With a reduction in INS Ca content, the yield stress decreased, whereas LT values increased indicating a weaker, more flexible casein network. Microstructure of rennet-induced gels near the GM point and 2 to 10 h after this point was studied using fluorescence microscopy. At GM, gels made from milk acidified to pH 6.4 exhibited more branched, interconnected networks, whereas strands and clusters became larger with a reduction in milk pH to 5.4. Gels made from milk with EDTA added had more finely dispersed protein clusters compared with gels made from milk with no EDTA added. These microscopic observations supported the effect of loss of INS Ca on GM and LT. There was a decrease in apparent interconnectivity between strands in gel microstructure during aging, which agreed with the decrease in G′ after GM. It can be concluded that low levels of solubilization of INS Ca and the decrease in milk pH resulted in an increase in GM. With greater losses of INS Ca there was excessive reduction in cross-linking within CM, which resulted in weaker, more flexible rennet gels. This complex behavior cannot be explained by adhesive hard sphere models for CM or rennet gels made from these CM.  相似文献   

8.
In this study, physicochemical and microbiological properties of traditional and commercial yogurt samples were determined during 4 wk of storage. Proteolytic activity, which occurs during the storage period of yogurt samples, was also determined. Peptide fractions obtained from yogurts were investigated and the effect of proteolysis on peptide release during storage was determined. The antioxidant activities of peptides released from yogurt water-soluble extracts (WSE) and from HPLC fractions were determined by 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) methods. The antioxidant activity of WSE from traditional yogurt was greater than that of WSE from commercial yogurts. In analysis by the ABTS method, mean values increased from 7.697 to 8.739 mM Trolox/g in commercial yogurts, and from 10.115 to 13.182 mM Trolox/g in traditional yogurts during storage. Antioxidant activities of peptides released from HPLC fractions of selected yogurt samples increased 10 to 200 times. In all yogurt samples, the greatest antioxidant activity was shown in the F2 fraction. After further fractionation of yogurt samples, the fractions coded as F2.2, F2.3, F4.3, and F4.4 had the highest antioxidant activity values. Total antioxidant activity of yogurts was low but after purification of peptides by fractionation in HPLC, peptide fractions with high antioxidant activity were obtained.  相似文献   

9.
The effects of ultra-high pressure homogenization (UHPH) on cow's milk were investigated and its suitability for yogurt manufacturing was compared with the conventional process currently applied in the yogurt industry. Yogurts were prepared from UHPH-treated milks at 200 and 300 MPa at 40 °C, and yogurts prepared from heat-treated milk at 90 °C for 90 s, homogenized at 15 MPa and enriched with 3% of skim milk powder were used as control samples. This study included determination of titrable acidity, water-holding capacity (WHC), and textural and rheological evaluation of gels in both set-type and stirred yogurts. In order to follow the evolution of yogurts during storage at refrigeration temperature (4–6 °C), all analyses were carried out weekly (1, 7, 14, 21 and 28 days). Results showed that yogurts from UHPH-treated milk presented higher WHC and firmness values compared with the conventional yogurts. However, the disruption of the network from UHPH-treated milk into stirred gels resulted in yogurts with higher consistency, less syneresis but coarser structure than the conventional ones.  相似文献   

10.
Effect of calcium on the physical properties of stirred probiotic yogurt   总被引:1,自引:0,他引:1  
The effect of calcium on the viscosity, firmness, and smoothness, as determined by extent of nodulation, of stirred probiotic yogurt produced by bacterial fermentation was investigated. Standardized milk for yogurt manufacture was prepared, and calcium was added or removed from the system. Calcium was added as Ca2+ in the form of CaCl2 (up to 13.6 mM) or nonionic calcium as Gadocal-K (calcium potassium citrate; up to 49.8 mM). Calcium was removed by chelating with sodium citrate (up to 16 mM) or by cation exchange with Amberlite IR-120 plus (sodium form) resin (up to 10 g/L). Calcium chloride and sodium citrate were added either before or after heat treatment of milk, and nonionic calcium was added before heat treatment. Calcium removal by ion exchange was performed before heat treatment. Neither Ca2+ addition nor removal by chelation with citrate resulted in stirred yogurt with viscosity, firmness, and smoothness superior to those of the control yogurt, whereas addition of 49.8 mM nonionic calcium and removal of calcium (5.6 mM or ∼10% of total calcium) by cation exchange improved the firmness and viscosity without affecting yogurt smoothness. The study identified Gadocal-K as a possible source of calcium fortification of stirred yogurt without loss of texture.  相似文献   

11.
We investigated the effect of altering temperature immediately after gels were formed at 37°C. We defined instrumentally measurable gelation (IMG) as the point at which gels had a storage modulus (G′) ≥5 Pa. Gels were made at constant incubation temperature (IT) of 37°C up to IMG, and then cooled to 30 or 33.5, or heated to 40.5 or 44°C, at a rate of 1°C/min and maintained at those temperatures until pH 4.6. Control gel was made at 37°C (i.e., no temperature change during gelation/gel development). Gel formation was monitored using small strain dynamic oscillatory rheology, and the resulting structure and physical properties at pH 4.6 were studied by fluorescence microscopy, large deformation rheology, whey separation (WS), and permeability (B). A single strain of Streptococcus thermophilus was used to avoid variations in the ratios of strains that could have resulted from changes in temperature during fermentation. Total time required to reach pH 4.6 was similar for samples made at constant IT of 37°C or by cooling after IMG from 37 to either 30 or 33.5°C, but gels heated to 40 or 44°C needed less time to reach pH 4.6. Cooling gels after IMG resulted in an increase in G′ values at pH 4.6, a decrease in LTmax, WS, and B, and an increase in the area of protein aggregates of micrographs compared with the control gel made at constant IT of 37°C. Heating gels after IMG resulted in a decrease in G′ values at pH 4.6 and an increase in LTmax values and WS. The physical properties of acid milk gels were dominated by the temperature profile during the gel-strengthening phase that occurs after IMG. This study indicates that the final properties of yogurt greatly depend on the environmental conditions (e.g., temperature, time/rate of pH change) experienced by the casein particles/clusters during the critical early gel development phase when bonding between and within particles is still labile. Cooling of gels may encourage inter-cluster strand formation, whereas heating of gels may promote intra-cluster fusion and the breakage of strands between clusters.  相似文献   

12.
Acid whey resulting from the production of soft cheeses is a disposal problem for the dairy industry. Few uses have been found for acid whey because of its high ash content, low pH, and high organic acid content. The objective of this study was to explore the potential of recovery of whey protein from cottage cheese acid whey for use in yogurt. Cottage cheese acid whey and Cheddar cheese whey were produced from standard cottage cheese and Cheddar cheese-making procedures, respectively. The whey was separated and pasteurized by high temperature, short time pasteurization and stored at 4°C. Food-grade ammonium hydroxide was used to neutralize the acid whey to a pH of 6.4. The whey was heated to 50°C and concentrated using ultrafiltration and diafiltration with 11 polyethersulfone cartridge membrane filters (10,000-kDa cutoff) to 25% total solids and 80% protein. Skim milk was concentrated to 6% total protein. Nonfat, unflavored set-style yogurts (6.0 ± 0.1% protein, 15 ± 1.0% solids) were made from skim milk with added acid whey protein concentrate, skim milk with added sweet whey protein concentrate, or skim milk concentrate. Yogurt mixes were standardized to lactose and fat of 6.50% and 0.10%, respectively. Yogurt was fermented at 43°C to pH 4.6 and stored at 4°C. The experiment was replicated in triplicate. Titratable acidity, pH, whey separation, color, and gel strength were measured weekly in yogurts through 8 wk. Trained panel profiling was conducted on 0, 14, 28, and 56 d. Fat-free yogurts produced with added neutralized fresh liquid acid whey protein concentrate had flavor attributes similar those with added fresh liquid sweet whey protein but had lower gel strength attributes, which translated to differences in trained panel texture attributes and lower consumer liking scores for fat-free yogurt made with added acid whey protein ingredient. Difference in pH was the main contributor to texture differences, as higher pH in acid whey protein yogurts changed gel structure formation and water-holding capacity of the yogurt gel. In a second part of the study, the yogurt mix was reformulated to address texture differences. The reformulated yogurt mix at 2% milkfat and using a lower level of sweet and acid whey ingredient performed at parity with control yogurts in consumer sensory trials. Fresh liquid acid whey protein concentrates from cottage cheese manufacture can be used as a liquid protein ingredient source for manufacture of yogurt in the same factory.  相似文献   

13.
High protein levels in yogurt, as well as the presence of denatured whey proteins in the milk, lead to the development of firm gels that can make it difficult to formulate a fluid beverage. We wanted to prepare high-protein yogurts and explore the effects of using micellar casein isolate (MCI), which was significantly depleted in whey protein by microfiltration. Little is known about the use of whey protein-depleted milk protein powders for high-protein yogurt products. Microfiltration also depletes soluble ions, in addition to whey proteins, and so alterations to the ionic strength of rehydrated MCI dispersions were also explored, to understand their effects on a high-protein yogurt gel system. Yogurts were prepared at 8% protein (wt/wt) from MCI or nonfat dry milk (NDM). The NDM was dispersed in water, and MCI powders were dispersed in water (with either low levels of added lactose to allow fermentation to achieve the target pH, or a high level to match the lactose content of the NDM sample) or in ultrafiltered (UF) milk permeate to align its ionic strength with that of the NDM dispersion. Dispersions were then heated at 85°C for 30 min while stirring, cooled to 40°C in an ice bath, and fermented with yogurt cultures to a final pH of 4.3. The stiffness of set-style yogurt gels, as determined by the storage modulus, was lowest in whey protein-depleted milk (i.e., MCI) prepared with a high ionic strength (UF permeate). Confocal laser scanning microscopy and permeability measurements revealed no large differences in the gel microstructure of MCI samples prepared in various dispersants. Stirred yogurt made from MCI that was prepared with low ionic strength showed slow rates of elastic bond reformation after stirring, as well as slower increases in cluster particle size throughout the ambient storage period. Both the presence of denatured whey proteins and the ionic strength of milk dispersions significantly affected the properties of set and stirred-style yogurt gels. Results from this study showed that the ionic strength of the heated milk dispersion before fermentation had a large influence on the gelation pH and strength of acid milk gels, but only when prepared at high (8%) protein levels. Results also showed that depleting milk of whey proteins before fermentation led to the development of weak yogurt gels, which were slow to rebody and may be better suited for preparing cultured milk beverages where low viscosities are desirable.  相似文献   

14.
Low methoxyl (LM) pectin was combined with 3-kDa molecular weight cut-off permeates from milk subjected to pH 6.7 to 5 and 7°C or 40°C with the objective of studying the effect of solubilized micellar calcium on viscoelastic properties of LM-pectin-milk mixes. Lowering the pH of skim milk with hydrochloric acid during ultrafiltration gradually promoted permeates to exhibit gel-like behavior when combined with LM-pectin. The onset of the gel-like behavior (G′ > 1) occurred at a higher pH when permeates were obtained from milk filtered at 7°C compared with 40°C. As pH value during ultrafiltration approached 5 and regardless of temperature, G′ for permeate-pectin mixes approached the same values (∼70 Pa) as G′ for skim milk-pectin mixes. In all cases G′ was highly correlated with free calcium concentration (r > 0.95). The gradual acidification of skim milk-LM-pectin using glucono-δ-lactone, promoted a sharp increase in storage modulus as pH approached 5.2 and a maximum G′ increment (ΔG′) at pH ∼4.9. From pH 4.9 to 4, G′ continued to increase but at smaller increments. It was concluded that LM-pectin-casein micelle interaction in milk is a 2-step process: 1) solubilized micellar calcium dependent pectin-pectin interaction as pH approaches 5.0 to 4.9, and 2) pectin-casein micelle interaction in the 5.0-4.9 to 4.0 pH range.  相似文献   

15.
The fermentation of preconcentrated milk is a challenging method to avoid acid whey during the manufacture of high-protein fermented milks like Greek yogurt. Milk concentrates (10% protein) were fermented to a final pH of 5.0, 4.8, or 4.6 and processed into stirred yogurt. Additionally, the potential of power ultrasound (US) as a post-processing tool was examined by sonicating the stirred yogurt with a sonotrode at 20 kHz. Set gels fermented to pH 4.8 and 5.0 were considerably softer than gels fermented to pH 4.6. Stirred yogurts fermented to pH 4.8 or 5.0 were less grainy and exhibited a reduced apparent viscosity and water-holding capacity. The application of US further decreased the visual graininess and product viscosity whereas the particle size was only slightly affected. The final pH and sonication are two powerful approaches to control the rheological properties of high-protein fermented milks, offering the potential for innovative processes and products.  相似文献   

16.
In this study, skim milk (9.5% w/v solid content) was supplemented with 1-3% (w/v) lentil flour or skim milk powder, inoculated with a yogurt culture, fermented and stored at 4 °C. Acid production during the fermentation, microbial growth, physical properties (pH, syneresis, and color), rheological properties (dynamic oscillation temperature sweep test at 4-50 °C), during 28 days of refrigerated storage and also sensory properties (flavor, mouth feel, overall acceptance and color) after production, were studied. Milk supplementation with 1-3% lentil flour enhanced acid production during fermentation, but the microbial population (CFU) of both S. thermophilus and L. delbrueckii subsp. bulgaricus were in the same range in all lentil flour and skim milk powder supplemented yogurts. The average pH of samples decreased from 4.5 to 4.1 after 28 days storage. Syneresis in 1-2% lentil flour supplemented yogurts was significantly higher than all other samples; however, greater lentil supplementation (3%) resulted in the lowest syneresis during the 28 days storage. With respect to color, “a” and “L” values did not significantly differ in all samples and remained constant after 28 days whereas “b” value increased as a result of lentil supplementation. Yogurt with 3% lentil flour showed higher storage (G') and loss (G?) moduli in comparison with samples supplemented with 1-3% skim milk powder and the non-supplemented control yogurt. Storage modulus (G') was higher than loss modulus (G?) in all samples and at all temperatures between 4 and 50 °C and they showed a hysteresis loop over this temperature range when the samples were heated and cooled. 1-2% lentil flour supplemented yogurt showed comparable sensory properties in comparison with 1-2% skim milk powder supplemented yogurt and the control sample.  相似文献   

17.
The influence of different levels of inulin on the quality of fat-free yogurt production was investigated. Inulin was added to milk containing 0.1% of milk fat to give inulin levels of 1, 2 and 3%. The experimental yogurts were compared with control yogurt produced from whole milk. The total solids content of milk was standardized to 14% by adding skim milk powder to the experimental yogurt. The chemical composition, pH, titratable acidity, whey separation, consistency, acetaldehyde and volatile fatty acidity contents were determined in the experimental yogurts after 1, 7 and 15 days. Sensory properties of the yogurts were evaluated during storage. The addition of inulin at more than 1% increased whey separation and consistency. Acetaldehyde, pH and titratable acidity were not influenced by addition of inulin. Tyrosine and volatile fatty acidity levels were negatively affected by inulin addition. With respect to the organoleptic quality of yogurt, inulin addition caused a decrease in organoleptic scores: the control yogurt had the highest score, and the lowest score was obtained in yogurt samples containing 3% of inulin. Overall, the yogurt containing 1% of inulin was similar in quality characteristics to control yogurt made with whole milk.  相似文献   

18.
The effect of orange fiber addition on yogurt viscoelastic properties was studied, the following factors were evaluated: (i) fiber doses (0, 0.2, 0.4, 0.6, 0.8 and 1 g/100 ml) (ii) fiber particle size (0.417-0.7 and 0.701-0.991 mm) (iii) fiber addition prior or after pasteurization. (i) In yogurts with pasteurized fiber G′, G″ and complex viscosity increased with fiber dose, whereas in non-pasteurized fiber yogurts smaller fiber particles (<0.4 g/100 ml) rheological parameters decreased due to the disruptive effect of the fiber, and over 0.6 g/100 ml rheological parameters increased. The presence of particles alters yogurt structure but when the fiber dose is high enough the water absorption compensates the weakening effect of the fiber. (ii) G′, G″ and viscosity were higher in yogurts with large particles than in yogurts with fiber of smaller size. The higher the number of fiber particles, the higher the disrupting effect. (iii) Fiber pasteurization in the mix enhances its integration in the gel matrix.  相似文献   

19.
Currently, the food industry wants to expand the range of probiotic yogurts but each probiotic bacteria offers different and specific health benefits. Little information exists on the influence of probiotic strains on physicochemical properties and sensory characteristics of yogurts and fermented milks. Six probiotic yogurts or fermented milks and 1 control yogurt were prepared, and we evaluated several physicochemical properties (pH, titratable acidity, texture, color, and syneresis), microbial viability of starter cultures (Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus) and probiotics (Lactobacillus acidophilus, Lactobacillus casei, and Lactobacillus reuteri) during fermentation and storage (35 d at 5°C), as well as sensory preference among them. Decreases in pH (0.17 to 0.50 units) and increases in titratable acidity (0.09 to 0.29%) were observed during storage. Only the yogurt with S. thermophilus, L. delbrueckii ssp. bulgaricus, and L. reuteri differed in firmness. No differences in adhesiveness were determined among the tested yogurts, fermented milks, and the control. Syneresis was in the range of 45 to 58%. No changes in color during storage were observed and no color differences were detected among the evaluated fermented milk products. Counts of S. thermophilus decreased from 1.8 to 3.5 log during storage. Counts of L. delbrueckii ssp. bulgaricus also decreased in probiotic yogurts and varied from 30 to 50% of initial population. Probiotic bacteria also lost viability throughout storage, although the 3 probiotic fermented milks maintained counts ≥107 cfu/mL for 3 wk. Probiotic bacteria had variable viability in yogurts, maintaining counts of L. acidophilus ≥107 cfu/mL for 35 d, of L. casei for 7 d, and of L. reuteri for 14 d. We found no significant sensory preference among the 6 probiotic yogurts and fermented milks or the control. However, the yogurt and fermented milk made with L. casei were better accepted. This study presents relevant information on physicochemical, sensory, and microbial properties of probiotic yogurts and fermented milks, which could guide the dairy industry in developing new probiotic products.  相似文献   

20.
D.W. Olson 《LWT》2008,41(5):911-918
The effect of manufacturing yogurt with a wide variation in Lactobacillus acidophilus inoculation level while holding the yogurt culture inoculation level constant on the properties of the resulting yogurt was determined to find out if any problems can occur if an excessively high level of L. acidophilus is used in yogurt production. Four batches of plain, set-style yogurt were manufactured with skim milk, nonfat dry milk, yogurt cultures, and with or without L. acidophilus (0, 0.0239, 0.238, or 2.33 g/100 g). After homogenization, pasteurization, and cooling, yogurt mixes were inoculated, poured into containers, incubated to pH 4.5, and cooled. Lactobacilli and L. acidophilus counts, pH, amount of syneresis, color, apparent viscosities, and sensory scores were determined during storage. The yogurt inoculated with 0.238 g/100 g L. acidophilus had the highest L. acidophilus counts from 4 to 7 wk. Yogurts inoculated with 2.33 g/100 g L. acidophilus generally had lower lactobacilli counts, L* values, apparent viscosities, and sensory scores but more syneresis and higher a* and b* values than the remaining yogurts. An excessively high inoculated level of L. acidophilus (2.33 g/100 g) resulted in an inferior quality yogurt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号