首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Dynamic routing has been adopted in circuit-switched networks in many parts of the world. Most of the routing algorithms used are least loaded routing (LLR) based for its simplicity and efficiency. Rerouting is the practice of routing calls on alternate paths back to direct paths or to other less congested alternate paths. It allows the continuous redistribution of network loads for the relief of the congestion on direct paths. In this paper, we present an original analysis of an LLR-based rerouting scheme. Through numerical examples and confirmation by computer simulation, the throughput gain of rerouting is established  相似文献   

2.
Traffic restoration in case of a failure in a circuit-switched telecommunications network involves finding alternate paths for all working paths that are severed by the failure, and rerouting affected traffic on these alternate paths. A new hierarchical self-healing ring (HSHR) architecture for circuit-switched networks is proposed and the design of HSHR networks is considered. A general cost model incorporating both the installation cost and the material cost is used. It is shown that the enumeration method, which finds the optimum configuration of HSHR, can only be used for small networks due to the complexity. Heuristic algorithms to find near-optimum HSHR configurations are presented. The routing and dimensioning of HSHR are also considered. Dimensioning of an HSHR is transformed into dimensioning of single self-healing rings inside the HSHR. Numerical results show that the performance of the heuristic is satisfactory  相似文献   

3.
Routing in wavelength-routed all-optical WDM networks has received much attention in the past decade, for which fixed and dynamic routing methods have been proposed. Taking into account the observation that wavelength-routed all-optical WDM networks are similar to circuit-switched voice networks, except with regard to wavelength conversion, we propose an adaptive alternate routing (AAR) scheme for wavelength-routed all-optical WDM networks. A major benefit of AAR is that it can operate and adapt without requiring an exchange of network status, i.e., it is an information-less adaptive routing scheme. The scope of this work is to understand this scheme in its own right since no other dynamic routing schemes are known to have the information-less property. In this paper, we conduct a systematic study of AAR with regard to factors such as the number of converters, load conditions, traffic patterns, network topologies, and the number of alternate paths considered. We observe that the routing scheme with multiple alternate routes provides more gain at a lower load instead of requiring any nodes to be equipped with wavelength converters. On the other hand, the availability of wavelength converters at some nodes, along with adaptive routing, is beneficial at a moderate to high load without requiring all nodes to be equipped with wavelength converters. We also observed that a small number of alternate routes considered in a network without wavelength converters gives a much better performance than a network with full wavelength converters and fewer alternate routes. Throughout this study, we observed that the proposed adaptive alternate routing scheme adapts well to the network traffic condition.  相似文献   

4.
We present two dynamic routing algorithms based on path and neighborhood link congestion in all-optical networks. In such networks, a connection request encounters higher blocking probability than in circuit-switched networks because of the wavelength-continuity constraint. Much research has focused on the shortest-path routing and alternate shortest-path routing. We consider fixed-paths least-congestion (FPLC) routing in which the shortest path may not be preferred to use. We then extend the algorithm to develop a new routing method: dynamic routing using neighborhood information. It is shown by using both analysis and simulation methods that FPLC routing with the first-fit wavelength-assignment method performs much better than the alternate routing method in mesh-torus networks (regular topology) and in the NSFnet T1 backbone network (irregular topology). Routing using neighborhood information also achieves good performance when compared to alternate shortest-path routing  相似文献   

5.
In this paper, we compare the use of different types of routing procedures for circuit-switched traffic in nonhierarchical networks. The main performance criterion used is the end-to-end blocking probability. The results show that if the network traffic is light, alternate routing performs better than nonalternate routing, but if the network traffic is heavy, the situation is reversed. To improve the performance of networks using alternate routing, different types of strategies varying from fixed control to dynamic control are introduced. A comparison based on numerical examples shows the improvement in performance attained by using a dynamic control strategy compared to fixed control. Good control techniques result in nonalternate routing under heavy traffic loads; nonalternate routing is the most viable alternative in nonhierarchical networks under heavy traffic conditions.  相似文献   

6.
Classical hierarchical routing in telephone networks is extended to a wider class called out-of-chain routing in such a way that some useful properties of hierarchical routing are retained. This new routing pattern offers more potential paths than the fixed hierarchical one and can be introduced as a dynamic routing where the fixed alternate sequences change at some predetermined instants during the day. The effect of this new routing pattern on the network performances is examined. The main topic of this paper is to present heuristic methods used to optimise such routings in large networks. We show on artificial networks that the throughput of a given network can be significantly improved by suitable routing choices. We demonstrate that the integration of routing changes within a multihour dimensioning process is possible but the lack of realistic data does not permit at this time to quantify the value of routing optimization on real networks.  相似文献   

7.
The performance of three dynamic routing techniques for small circuit-switched networks is compared by simulation with three static routing techniques and with a repacking technique for calls in progress. It is found that dynamic routing algorithms improve network performance by increasing the number of paths available for call connection over what would otherwise be available to a corresponding static routing. It is also shown that call repacking increases the amount of carried traffic significantly, and that this improvement is obtained by a different mechanism than for dynamic routing. The possibility of combining the two techniques is also investigated, and general characteristics of good dynamic routing techniques are presented.  相似文献   

8.
We present a new traffic engineering (TE) model which is based on QoS rerouting and uses hybrid resilience to improve the recovery performance of multi-layer networks where an MPLS network is layered above an MPlambdaS network. We formulate the rerouting of the LSPs/lambdaSPs as a multi-constrained problem and use its polynomial reduction to find a heuristic solution that can be implemented by standardized constraint-based routing algorithms. This heuristic solution uses a cost-based routing optimization to achieve different network configurations which multiplex/separate bandwidth-aware LSPs/lambdaSPs on the network links. We formulate the resilience upon failure as a multi-objective problem consisting of finding a resilience strategy that minimizes recovery operation time and maximizes the LSP/lambdaSP restorability. A solution to this problem is proposed where a hybrid resilience framework is used to achieve restoration in the MPLS layer to complement path switching in the MPlambdaS layer. We evaluate the performance of the TE model when rerouting the tunnels carrying the traffic offered to a 23- and 31-node networks. Simulation reveals that the hybrid resilience model performs better than classical recovery mechanisms. In terms of restorability, quality of rerouting paths and rerouting stability  相似文献   

9.
In this paper, we design a localized power‐aware alternate routing (LPAR) protocol for dynamic wireless ad hoc networks. The design objective is to prolong the lifetime of wireless ad hoc networks wherein nodes can adaptively adjust their transmission power based on communication ranges. LPAR achieves this goal via two phases. In the first phase, energy draining balancing is achieved by identifying end‐to‐end paths with high residual energy. The second phase is designed to effectively reduce the power consumed for packet forwarding. This is achieved by iteratively performing adaptive localized power‐aware alternate rerouting to bypass each (potentially) high‐power link along the end‐to‐end path identified in the first phase. Further, the design of LPAR enables nodes to collect their neighborhood information ‘on‐demand’, which can effectively reduce the overhead for gathering such information. LPAR is suitable for both homogeneous and non‐homogeneous networks. Simulation results demonstrate that LPAR achieves improved performance in reducing protocol overhead and also in prolonging network lifetime as compared with existing work. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, we have proposed an efficient wavelength rerouting algorithm for dynamic provisioning of lightpath. In wavelength division multiplexed (WDM) networks rerouting of lightpath can be used to improve throughput and to reduce blocking probability. We have proposed a shortest path wavelength rerouting (SPWRR) algorithm for dynamic traffic in WDM optical networks. The results have shown that SPWRR algorithm can improve blocking performance of the network. In this paper, low complexity algorithm has been developed which is used for the calculation of blocking probability of network. The proposed algorithm has also been applied on the realistic network such as NSFnet for calculation and optimization of blocking probability of the network.  相似文献   

11.
We study a class of circuit-switched wavelength-routing networks with fixed or alternate routing and with random wavelength allocation. We present an iterative path decomposition algorithm to evaluate accurately and efficiently the blocking performance of such networks with and without wavelength converters. Our iterative algorithm analyzes the original network by decomposing it into single-path subsystems. These subsystems are analyzed in isolation, and the individual results are appropriately combined to obtain a solution for the overall network. To analyze individual subsystems, we first construct an exact Markov process that captures the behavior of a path in terms of wavelength use. We also obtain an approximate Markov process which has a closed-form solution that can be computed efficiently for short paths. We then develop an iterative algorithm to analyze approximately arbitrarily long paths. The path decomposition approach naturally captures the correlation of both link loads and link blocking events. Our algorithm represents a simple and computationally efficient solution to the difficult problem of computing call-blocking probabilities in wavelength-routing networks. We also demonstrate how our analytical techniques can be applied to gain insight into the problem of converter placement in wavelength-routing networks  相似文献   

12.
On-demand loop-free routing with link vectors   总被引:1,自引:0,他引:1  
We present the on-demand link vector (OLIVE) protocol, a routing protocol for ad hoc networks based on link-state information that is free of routing loops and supports destination-based packet forwarding. Routers exchange routing information reactively for each destination in the form of complete paths, and each node creates a labeled source graph based on the paths advertised by its neighbors. A node originates a broadcast route request (RREQ) to obtain a route for a destination for which a complete path does not exist in its source graph. When the original path breaks, a node can select an alternative path based on information reported by neighbors, and a node can send a unicast RREQ to verify that the route is still active. A node that cannot find any alternate path to a destination sends route errors reliably to those neighbors that were using it as next hop to the destination. Using simulation experiments in ns2, OLIVE is shown to outperform dynamic source routing, ad hoc on-demand distance vector, optimized link-state routing protocol, and topology broadcast based on reverse-path forwarding, in terms of control overhead, throughput, and average network delay, while maintaining loop-free routing with no need for source routes.  相似文献   

13.
In this paper, we have proposed an efficient wavelength rerouting algorithm for dynamic provisioning of lightpath. In wavelength-division multiplexed (WDM) networks rerouting of lightpath can be used to improve throughput and to reduce blocking probability. We have proposed a Lightpath Rerouting Algorithm (LRRA) for dynamic traffic in WDM optical networks. The results have shown that LRRA can improve blocking performance of the network. In this paper, low complexity algorithm has been developed which is used for the calculation of blocking probability of network. The proposed algorithm has also been applied on the realistic network such as NSFnet for calculation and optimization of blocking probability of the network. The results have also shown that the proposed algorithm can be implemented to huge networks for good blocking performance of the network.  相似文献   

14.
This is an expanded version of an earlier report, adding, new results. The first part introduces a simple analytic model showing that dynamic routing may increase network throughput or lower delay when trunks are moderately loaded, but will reduce throughput or increase delay at heavy trunk loads. The second part of the paper presents simulation results characterizing: 1) the operation of a network "protected" by end-to-end flow control, 2) the operation of an "unprotected" network, 3) the transition between these two modes, 4) the effect of changing the update interval for the routing algorithms, 5) the effect of slow local loops, and 6) the effect of increasing the number of alternate paths available for dynamic routing. Overall, the results show that dynamic routing improves network performance only over a small parameter range, and should dynamic routing be used at all, it must be implemented with great care.  相似文献   

15.
Internetworking connectionless and connection oriented networks   总被引:2,自引:0,他引:2  
The use of connection-oriented (CO) networks for the transport of IP traffic is seen to have value to both users and service providers. Given the expectation that most endpoint-generated traffic will be in the form of connectionless (CL) IP datagrams, we address the problem of how to internetwork a CL (IP) network with a CO network. CO networks can be packet-switched or circuit-switched. Examples of packet-switched CO networks include ATM and MPLS networks, in which resource reservations are made at the ATM or shim layer, and IP-switch-based networks, in which resource reservations are made at the IP layer. Examples of circuit-switched networks include SONET/SDH and WDM networks that consist of programmable optical crossconnects. We consider the internetworking problem for two modes of operation of CO networks: provisioned, in which connections are set up a priori, and switched, in which connections are set up on demand. The main focus of this article is on the more complex problem: the internetworking of CL IP networks with CO networks operated in a switched mode. Our solution consists of (i) interworking user plane protocols with protocol conversion in some cases instead of always using protocol encapsulation, (ii) interworking routing protocols by either simply having gateways know routing information of both networks or having all nodes know routing information of both networks, and (iii) interworking signaling protocols by using application- or transport-layer end-to-end handshakes to trigger connection setups through the CO network. We demonstrate throughput improvements with our integrated routing interworking scheme over the MPOA IP-ATM internetworking solution for two example networks  相似文献   

16.
In this paper, we have proposed the adaptive subcarriers-distribution routing and spectrum allocation (ASD-RSA) algorithm, which is the first elastic optical network routing and spectrum allocation algorithm based on distributed subcarriers. It allocates lightpaths to request adaptively and proved to achieve much lower bandwidth blocking probability than traditional routing and spectrum allocation algorithms based on centralized subcarriers with integer linear programming and dynamic simulation methods. Additionally, the ASD-RSA algorithm performs the best with three alternate routing paths; this character will decrease the calculating amount of both alternate routing path searching and spectrum allocation immensely in large networks.  相似文献   

17.
We present two routing strategies, identified herein as static least loaded routing (SLLR) and dynamic least loaded routing (DLLR). Dynamic routing in circuit-switched networks has been an active research topic. The literature to date in this area has focused on how to choose the "best" alternate route for overflow traffic from a direct route, within a network setting referred to as the backbone network. The traffic type considered in the literature has typically been one with a single destination. Least loaded routing (LLR) is an example of a state-dependent routing that selects the least loaded two-link alternate route when traffic overflows from the direct route. Motivated by the development of an emerging traffic type, called multidestination traffic, whose destination is not necessarily limited to a single location, we provide two routing strategies that deal with both the routing of the multiple-destination traffic to the extended network dimension, which is referred to as the destination network, and the routing of the backbone network traffic via LLR. In selecting the destination for multidestination traffic, SLLR employs static information, whereas DLLR employs real-time load status information concerning the destination links. We develop fixed-point models for both DLLR and SLLR. We also validate and compare the models through simulation. The results suggest that DLLR outperforms SLLR in all the scenarios, demonstrating the benefit of state-dependent routing in an end-to-end network. Further, the DLLR scheme improves if an "incident preference" rule is adopted; the rule allows a multidestination call to first choose the incident destination link, if any.  相似文献   

18.
The paper presents new algorithms for dynamic routing of restorable bandwidth-guaranteed paths. We assume that connections are requested one-by-one and there is no prior knowledge of future arrivals. In order to guarantee restorability an alternate link (node) disjoint backup (restoration) path has to be determined, as well as an active path, when the connection is initiated. This joint on-line routing problem is particularly important in optical networks and in MPLS networks for dynamic provisioning of bandwidth-guaranteed or wavelength paths. A simple solution is to find two disjoint paths, but this results in excessive resource usage. Backup path bandwidth usage can be reduced by judicious sharing of backup paths amongst certain active paths while still maintaining restorability. The best sharing performance is achieved if the routing of every path in progress in the network is known to the routing algorithm at the time of a new path setup. We give a new integer programming formulation for this problem. Complete path routing knowledge is a reasonable assumption for a centralized routing algorithm, but is not often desirable, particularly when distributed routing is preferred. We show that a suitably developed algorithm which uses only aggregated information, and not per-path information, is able to perform almost as well as one using complete information. Disseminating this aggregate information is feasible using proposed traffic engineering extensions to routing protocols. We formulate the dynamic restorable bandwidth routing problem in this aggregate information scenario and develop efficient routing algorithms. The performance of our algorithm is close to the complete information bound.  相似文献   

19.
赵海涛  董育宁  张晖  李洋 《信号处理》2010,26(11):1747-1755
本文针对如何改善无线多跳Mesh网络的服务质量,满足无线多媒体业务对数据传输的带宽、时延、抖动的要求等问题,研究了一种基于无线信道状态和链路质量统计的MAC层最大重传次数的自适应调整算法。该算法通过对无线Mesh网络的无线信道环境的动态感知,利用分层判断法区分无线分组丢失的主要原因是无线差错还是网络拥塞导致,实时调整MAC层的最佳重传次数,降低无线网络中的分组冲突概率。基于链路状态信息的统计和最大重传策略,提出了一种启发式的基于环境感知的QoS路由优化机制HEAOR。该算法通过动态感知底层链路状态信息,利用灰色关联分析法自适应选择最优路径,在不增加系统复杂度的基础上,减少链路误判概率,提高传输效率。NS2仿真结果表明,HEAOR算法能有效减少重路由次数,降低链路失效概率,提高网络的平均吞吐率。本文提出的方法不仅能够优化MAC层的重传,而且通过发现跨层设计的优化参数实现对路径的优化选择。   相似文献   

20.
High throughput route selection in multi-rate wireless mesh networks   总被引:1,自引:0,他引:1  
Most existing Ad-hoc routing protocols use the shortest path algorithm with a hop count metric to select paths. It is appropriate in single-rate wireless networks, but has a tendency to select paths containing long-distance links that have low data rates and reduced reliability in multi-rate networks. This article introduces a high throughput routing algorithm utilizing the multi-rate capability and some mesh characteristics in wireless fidelity (WiFi) mesh networks. It uses the medium access control (MAC) transmission time as the routing metric, which is estimated by the information passed up from the physical layer. When the proposed algorithm is adopted, the Ad-hoc on-demand distance vector (AODV) routing can be improved as high throughput AODV (HT-AODV). Simulation results show that HT-AODV is capable of establishing a route that has high data-rate, short end-to-end delay and great network throughput.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号