首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
We have measured the onset and recovery speed of inhibition of N-type Ca2+ channels in adult rat superior cervical ganglion neurons by somatostatin (SS), norepinephrine (NE), and oxotremorine-M (oxo-M, a muscarinic agonist), using the whole cell configuration of the patch-clamp method with 5 mM external Ca2+. With a local perfusion pipette system that changed the solution surrounding the cell within 50 ms, we applied agonists at various times before a brief depolarization from -80 mV that elicited I(Ca). At concentrations that produced maximal inhibition, the onset time constants for membrane-delimited inhibition by SS (0.5 microM), NE (10 microM), and oxo-M (20 microM) were 2.1, 0.7, and 1.0 s, respectively. The time constants for NE inhibition depended only weakly on the concentration, ranging from 1.2 to 0.4 s in the concentration range from 0.5 to 100 microM. Inhibition by oxo-M (20 microM) through a different G-protein pathway that uses a diffusible cytoplasmic messenger had a time constant near 9 s. The recovery rate constant from membrane-delimited inhibition was between 0.09 and 0.18 s(-1), significantly higher than the intrinsic GTPase rate of purified G protein Go, suggesting that Ca2+ channels or other proteins in the plasma membrane act as GTPase activating proteins. We also measured the rate of channel reinhibition after relief by strong depolarizing prepulses, which should reflect the kinetics of final steps in the inhibition process. In the presence of different concentrations of NE, reinhibition was four to seven times faster than the onset of inhibition, indicating that the slowest step of inhibition must precede the binding of G protein to the channel. We propose a kinetic model for the membrane-delimited NE inhibition of Ca2+ channels. It postulates two populations of receptors with different affinities for NE, a single population of G proteins, and a single population of Ca2+ channels. This model closely simulated the time courses of onset and recovery of inhibition and reinhibition, as well as the dose-response curve for inhibition of Ca2+ channels by NE.  相似文献   

2.
Many neuromodulators inhibit N-type Ca2+ currents via G protein-coupled pathways in acutely isolated superior cervical ganglion (SCG) neurons. Less is known about which neuromodulators affect release of norepinephrine (NE) at varicosities and terminals of these neurons. To address this question, we used carbon fiber amperometry to measure catecholamine secretion evoked by electrical stimulation at presumed sites of high terminal density in cultures of SCG neurons. The pharmacological properties of action potential-evoked NE release paralleled those of N-type Ca2+ channels: Release was completely blocked by Cd2+ or omega-conotoxin GVIA, reduced 50% by 10 microM NE or 62% by 2 microM UK-14,304, an alpha2-adrenergic agonist, and reduced 63% by 10 microM oxotremorine M (Oxo-M), a muscarinic agonist. Consistent with action at M2 or M4 receptor subtypes, Oxo-M could be antagonized by 10 microM muscarinic antagonists methoctramine and tropicamide but not by pirenzepine. After overnight incubation with pertussis toxin, inhibition by UK-14,304 and Oxo-M was much reduced. Other neuromodulators known to inhibit Ca2+ channels in these cells, including adenosine, prostaglandin E2, somatostatin, and secretin, also depressed secretion by 34-44%. In cultures treated with omega-conotoxin GVIA, secretion dependent on L-type Ca2+ channels was evoked with long exposure to high K+ Ringer's solution. This secretion was not sensitive to UK-14,304 or Oxo-M. Evidently, many neuromodulators act on the secretory terminals of SCG neurons, and the depression of NE release at terminals closely parallels the membrane-delimited inhibition of N-type Ca2+ currents in the soma.  相似文献   

3.
5-HT produces voltage-independent inhibition of the N-, P/Q-, and T-type Ca2+ currents in sensory neurons of Xenopus larvae by acting on 5-HT1A and 5-HT1D receptors. We have explored the underlying mechanisms further and found that the inhibition of high voltage-activated (HVA) currents by 5-HT is mediated by a pertussis toxin-sensitive G-protein that activates a diffusible second messenger. Although modulation of T-type currents is membrane-delimited, it was not affected by GDP-beta-S (2 mM), GTP-gamma-S (200 microM), 5'-guanylyl-imidodiphosphate tetralithium (200 microM), aluminum fluoride (AlF4-, 100 microM), or pertussis toxin, suggesting that a GTP-insensitive pathway was involved. To investigate the modulation of the T currents further, we synthesized peptides that were derived from conserved cytoplasmic regions of the rat 5-HT1A and 5-HT1D receptors. Although two peptides derived from the third cytoplasmic loop inhibited the HVA currents by activating G-proteins and occluded the modulation of HVA currents by 5-HT, two peptides from the second cytoplasmic loop and the C tail had no effect. None of the four receptor-derived peptides had any effect on the T-type currents. We conclude that 5-HT modulates T-type channels by a membrane-delimited pathway that does not involve G-proteins and is mediated by a functional domain of the receptor that is distinct from that which couples to G-proteins.  相似文献   

4.
We have found that phosphorylation of a G-protein-coupled receptor by protein kinase C (PKC) disrupts modulation of ion channels by the receptor. In AtT-20 cells transfected with rat cannabinoid receptor (CB1), the activation of an inwardly rectifying potassium current (Kir current) and depression of P/Q-type calcium channels by cannabinoids were prevented by stimulation of protein kinase C by 100 nM phorbol 12-myristate 13-acetate (PMA). In contrast, activation of Kir current by somatostatin was unaffected, and inhibition of calcium channels was only modestly attenuated. The possibility that PKC acted by phosphorylating CB1 receptors was confirmed by demonstrating that PKC phosphorylated a single serine (S317) of a fusion protein incorporating the third intracellular loop of CB1. Mutating this serine to alanine did not affect the ability of CB1 to modulate currents, but it eliminated disruption by PMA, demonstrating that PKC can disrupt ion channel modulation by receptor phosphorylation.  相似文献   

5.
The effects of alpha1-adrenoceptor stimulation on intracellular Ca2+ transients, contractility and L-type Ca2+ current (ICa,L) were studied in single cells isolated from ventricles of guinea-pig hearts. The aim of our study was to elucidate the mechanisms of the positive inotropic effect of alpha1-adrenergic stimulation by focussing on the role of protein kinase C (PKC). Phenylephrine, an alpha1-adrenergic agonist, at concentrations of 50-100 microM elicited a biphasic inotropic response: a transient negative inotropic response (22.9+/-6.0% of control) followed by a sustained positive inotropic response (61.0+/-8.4%, mean+/-SE, n=12). The Ca2+ transient decreased by 10.2+/-3.9% during the negative inotropic phase, while it increased by 67.7+/-10% (n=12) during the positive inotropic phase. These effects were inhibited by prazosin (1 microM), a alpha1-adrenergic antagonist. Phenylephrine increased the ICa,L by 60.8+/-21% (n=5) during the positive inotropic phase. To determine whether activation of PKC is responsible for the increases in Ca2+ transients, contractile amplitude and ICa,L during alpha1-adrenoceptor stimulation, we tested the effects of 4beta-phorbol 12-myristate 13-acetate (PMA), a PKC activator, and of bisindolylmaleimide I (GF109203X) and staurosporine, both of which are PKC inhibitors. PMA mimicked phenylephrine's effects on Ca2+ transients, contractile amplitude and ICa,L. PMA (100 nM) increased the Ca2+ transient, contractile amplitude and ICa,L by 131+/-17%, 137+/-25% (n=8), and 81.1+/-26% (n=5), respectively. Prior exposure to GF109203X (1 microM) or staurosporine (10 nM) prevented the phenylephrine-induced increases in Ca2+ transients, contractile amplitude and ICa,L. Our study suggests that during alpha1-adrenoceptor stimulation increase in ICa,L via PKC causes an increase in Ca2+ transients and thereby in the contractile force of the ventricular myocytes.  相似文献   

6.
Rat superior cervical ganglion (SCG) neurons express low-threshold noninactivating M-type potassium channels (IK(M)), which can be inhibited by activation of M1 muscarinic receptors. This inhibition occurs via pertussis toxin-insensitive G-proteins belonging to the Galphaq family (Caulfield et al., 1994 ). We have used DNA plasmids encoding antisense sequences against the 3' untranslated regions of Galpha subunits (antisense plasmids) to investigate the specific G-protein subunits involved in muscarinic inhibition of IK(M). These antisense plasmids specifically reduced levels of the target G-protein 48 hr after intranuclear injection. In cells depleted of Galphaq, muscarinic inhibition of IK(M) was attenuated compared both with uninjected neurons and with neurons injected with an inappropriate GalphaoA antisense plasmid. In contrast, depletion of Galpha11 protein did not alter IK(M) inhibition. To determine whether the alpha or beta gamma subunits of the G-protein mediated this inhibition, we have overexpressed the C terminus of beta adrenergic receptor kinase 1 (betaARK1), which binds free beta gamma subunits. betaARK1 did not reduce muscarinic inhibition of IK(M) at a concentration of plasmid that can reduce beta gamma-mediated inhibition of calcium current (). Also, expression of beta1gamma2 dimers did not alter the IK(M) density in SCG neurons. In contrast, IK(M) was virtually abolished in cells expressing GTPase-deficient, constitutively active forms of Galphaq and Galpha11. These data suggest that Galphaq is the principal mediator of muscarinic IK(M) inhibition in rat SCG neurons and that this more likely results from an effect of the alpha subunit than the beta gamma subunits of the Gq heterotrimer.  相似文献   

7.
The signal transduction cascade between the activation of the somatostatin (SOM) receptor and modulation of transmitter release was study using Acetylcholine (Ach) release measurements and patch clamp recordings of Ca2+ current from acutely dissociated St 40 ciliary ganglion neurons. As in intact synapses, somal ACh release was blocked by 100 nM SOM or 100 microM dibutyril cGMP, and the SOM-mediated inhibition could be reversed by 10 microM 1-NAME (a selective inhibitor of nitric oxide synthase, NOS) or 100 microM Rp-8p-CPT-cGMPs (a selective inhibitor of a cGMP protein dependent kinase, PKG). In whole cell recordings, SOM inhibition of Ca2+ current rapidly relaxes to control levels but is sustained in perforated patch recordings which decreases cell dialysis. Inhibition of NOS or PKG in perforated patch recordings, however caused SOM effects to become transient again. We hypothesize that PKG alters the characteristics of the membrane-delimited G protein inhibition of Ca2+ current. Therefore SOM receptors trigger a membrane-delimited signal transduction cascade that is modulated by soluble messengers, converging on voltage activated Ca2+ channels. When both pathways are active together, SOM causes a sustained inhibition of neuronal Ca2+ current leading to a decrease in transmitter release.  相似文献   

8.
1. UTP and UDP depolarize rat superior cervical ganglion neurons and trigger noradrenaline release from these cells. The present study investigated the mechanisms underlying this excitatory action of uridine nucleotides by measuring whole-cell voltage-dependent K+ and Ca2+ currents. 2. Steady-state outward (holding) currents measured in the amphotericin B perforated-patch configuration at a potential of -30 mV were reduced by 10 microM UTP in a reversible manner, but steady-state inward (holding) currents at -70 mV were not affected. This action of UTP was shared by the muscarinic agonist oxotremorine-M. In current-voltage curves between -20 and -100 mV, UTP diminished primarily the outwardly rectifying current components arising at potentials positive to -60 mV. 3. Slow relaxations of muscarinic K+ currents (IM) evoked by hyperpolarizations from -30 to -55 mV were also reduced by 10 microM UTP (37% inhibition) and oxotremorine-M (81% inhibition). In contrast, transient K+-currents, delayed rectifier currents, fast and slow Ca2+-dependent K+ currents, as well as voltage-dependent Ca2+ currents were not altered by UTP. 4. In conventional (open-tip) whole-cell recordings, replacement of GTP in the pipette by GDPbetaS abolished the UTP-induced inhibition of IM, whereas replacement by GTPgammaS rendered it irreversible. 5. The UTP-induced reduction of IM was half maximal at 1.5 microM with a maximum of 37% inhibition; UDP was equipotent and equieffective, while ADP was less potent (half maximal inhibition at 29 microM). ATP had no effect at < or = 30 microM. 6. The inhibition of IM induced by 10 microM UTP was antagonized by pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid (PPADS) at > or = 30 microM and by reactive blue 2 at > or = 10 microM, but not by suramin at concentrations up to 30 microM. 7. These results show that rat superior cervical ganglion neurons possess uridine nucleotide preferring P2Y receptors which inhibit KM channels. This effect presumably forms the basis of the excitatory action of uridine nucleotides in rat sympathetic neurons.  相似文献   

9.
The GT1-1 GnRH neuronal cell lines exhibit highly differentiated properties of GnRH neurons. We have used GT1-1 cells to study the roles of norepinephrine (NE), membrane depolarization, calcium influx, and phorbol esters in the regulation of mitogen-activated protein (MAP) kinase. NE, which is known to stimulate the release of GnRH, induced MAP kinase activity, the tyrosine phosphorylation of MAP kinase, and MAP kinase kinase activity. Forskolin led to activation of MAP kinase comparable with that induced by NE, and a selective inhibitor of cAMP-dependent protein kinase, H8, attenuated the NE-induced activation of MAP kinase. On the other hand, elimination of extracellular calcium by EGTA completely blocked NE-induced tyrosine phosphorylation of MAP kinase, and a selective inhibitor of calcium/calmodulin-dependent protein kinase, KN-62, attenuated the NE-induced activation of MAP kinase. Furthermore, depolarization of GT1-1 cells with 75 mM KCl, 10 microM BayK 8644, or 1 microM calcium ionophore (A23187) induced rapid tyrosine phosphorylation of MAP kinase. The omission of calcium from the extracellular medium completely abolished these effects of tyrosine phosphorylation of MAP kinase. Phorbol 12-myristate 13-acetate (PMA) also induced MAP kinase activity, but pretreatment of the cultured cells with PMA to down-regulate protein kinase C did not abolish the activation of MAP kinase by NE. In addition, although phosphorylation of Raf-1 kinase was stimulated by PMA, this phosphorylation was not induced by either NE or A23187. These results demonstrate that NE activates MAP kinase directly in GT1-1 cells, and that the effect of NE is mediated by increase in the cAMP level and by calcium influx, but not by PMA-sensitive protein kinase C or Raf-1 kinase.  相似文献   

10.
Cationic current (Icat) and inhibition of the voltage-dependent Ca2+ current (ICa) evoked by muscarinic receptor activation with carbachol were studied using whole-cell patch clamp technique in smooth muscle cells isolated from longitudinal muscle of guinea pig small intestine. With low buffering of [Ca2+]i (0.1 mM BAPTA [1,2-bis-(2-aminophenoxy)-ethane-N,N, N', N'-tetraacetic acid] in pipette solution) Icat and ICa inhibitory responses had a rapid onset to an initial peak followed by a sustained phase. The sustained phase of ICa suppression was bigger than in the case when [Ca2+]i was clamped to 100 nM, but decreased with repeated stimulation. Upon repeated stimulation with 50 microM carbachol in cells where [Ca2+]i was clamped to 100 nM and when GTP was absent, Icat amplitude decreased strongly and more substantially compared to ICa inhibition, but both responses declined only slightly when 1 mM GTP was present in the pipette solution. GDP-betaS (1 or 5 mM) in pipette solution or pre-treatment of cells with pertussis toxin (6 microg/ml, for 4 h or longer) blocked Icat more than ICa suppression by carbachol, whereas L-NAME (N-omega-nitro-L-arginine methyl ester hydrochloride) (100 microM in pipette solution) affected neither of them significantly. We conclude that the cationic current and the suppression of the voltage-dependent Ca2+ current evoked by muscarinic receptor activation are mediated by pertussis toxin-sensitive G-protein(s) but the latter response was less sensitive to blockade by GDP-betaS and to GTP deficiency in the cell.  相似文献   

11.
The P2Y2 receptor is a uridine/adenosine triphosphate (UTP/ATP)-sensitive G-protein-linked nucleotide receptor that previously has been reported to stimulate the phosphoinositide signaling pathway. Messenger RNA for this receptor has been detected in brain tissue. We have investigated the coupling of the molecularly defined rat P2Y2 receptor to neuronal N-type Ca2+ channels and to M-type K+ channels by heterologous expression in rat superior cervical sympathetic (SCG) neurons. After the injection of P2Y2 cRNA, UTP inhibited the currents carried by both types of ion channel. As previously reported [Filippov AK, Webb TE, Barnard EA, Brown DA (1997) Inhibition by heterologously expressed P2Y2 nuerones. Br J Pharmacol 121:849-851], UTP inhibited the Ca2+ current (ICa(N)) by up to 64%, with an IC50 of approximately 0.5 microM. We now find that UTP also inhibited the K+M current (IK(M)) by up to 61%, with an IC50 of approximately 1.5 microM. UTP had no effect on either current in neurons not injected with P2Y2 cRNA. Structure-activity relations for the inhibition of ICa(N) and IK(M) in P2Y2 cRNA-injected neurons were similar, with UTP >/= ATP > ITP > GTP,UDP. However, coupling to these two channels involved different G-proteins: pretreatment with Pertussis toxin (PTX) did not affect UTP-induced inhibition of IK(M) but reduced inhibition of ICa(N) by approximately 60% and abolished the voltage-dependent component of this inhibition. In unclamped neurons, UTP greatly facilitated depolarization-induced action potential discharges. Thus, the single P2Y2 receptor can couple to at least two G-proteins to inhibit both Ca2+N and K+M channels with near-equal facility. This implies that the P2Y2 receptor may induce a broad range of effector responses in the nervous system.  相似文献   

12.
We studied the mechanism of action of methylene blue (Mblue), a putative guanylyl cyclase inhibitor, on the L-type calcium current (ICa) and the muscarinic activated K+ current (IK,ACh) in rat ventricular and atrial myocytes, respectively, and on the binding of [3H]quinuclidinyl benzylate in rat ventricular membranes. Superfusion, but not internal dialysis, with 30 microM Mblue antagonized the inhibitory effect of acetylcholine (ACh, 1 microM) on beta-adrenergic stimulation of ICa with isoprenaline (Iso, 10 nM or 1 microM). However, Mblue had no effect on the basal ICa or on the stimulation of ICa by Iso in the absence of ACh. The activation of IK,ACh by 3 microM ACh was also antagonized by Mblue in a dose-dependent manner. In contrast, Mblue had no effect on the activation of IK,ACh by either guanosine-5'-O-(3-thio)triphosphate or guanosine-5'-(beta,gamma-imido)triphosphate. Chlorpromazine (CPZ), a piperazine derivative like Mblue, also inhibited the muscarinic activation of IK,ACh in a dose-dependent manner. The specific binding of [3H]QNB, a muscarinic ligand, to rat ventricular membranes was displaced in a dose-dependent manner by Mblue and CPZ. The piperazine derivatives behaved like competitive antagonists of [3H]QNB binding, exhibiting equilibrium dissociation constant (Ki) values of 187 nM for Mblue and 366 nM for CPZ. In conclusion, Mblue exerts antimuscarinic effects on ICa and IK,ACh in rat cardiac myocytes that are best explained by the binding of Mblue to the M2 subtype of muscarinic receptors. This property probably contributes to the antimuscarinic effect of the putative guanylyl cyclase inhibitor reported in previous studies.  相似文献   

13.
The activation of PKC by the acute administration of the phorbol ester PMA (1 microM, 2h) to omental adipose tissue explants in vitro resulted in a marked (about 75%) and persistent (up to at least 96 h) inhibition of leptin secretion. This PKC-mediated inhibition was not observed after the administration of an inactive phorbol ester (phorbol 12,13-dicecanoate). The inhibition by PMA of leptin secretion was not restricted to the spontaneous secretion, but blocked also effectively the leptin response to a powerful stimulus, such as the glucocorticoid dexamethasone. As the PKC activity has been shown to be elevated during fasting, the negative relation here described between PKC activity and leptin secretion could be of physiological relevance.  相似文献   

14.
Recently, it was reported that muscarinic-type cholinergic receptors coupled to the phosphoinositide messenger system are present in the rabbit inner medullary collecting duct and Madin-Darby canine kidney (MDCK) cells. The receptor density in MDCK cells is 50 times more than that in inner medullary collecting duct cells. To examine if muscarinic receptor activation influences Na-K-ATPase, the effects of a cholinergic agonist, carbachol, on Na-K-ATPase activity in MDCK cells were measured. Carbachol inhibited Na-K-ATPase activity in a time- and concentration-dependent manner. A maximum of approximately 80% of the enzyme activity was inhibited in 160 min with an EC50 of 5 microM carbachol. The inhibition of Na-K-ATPase activity was reversible; up to 80% of the enzyme activity was recovered within 4 h after carbachol was removed. The inhibitory effect of carbachol was blocked by a muscarinic antagonist atropine and by inhibitors of protein kinase C (PKC), 1-(5-isoquinolinesulfonyl)-2-methyl-piperazine HCl, and N-(2-(methylamino)ethyl)-5-isoquinoline sulfonamide HCl. Direct activators of PKC, phorbol 12-myristate 13-acetate, N(n-heptyl)-5-chloro-1-naphthalene sulfonamide, and phosphatidyl serine, also inhibited Na-K-ATPase activity in MDCK cells, and their effect was also blocked by PKC inhibitors. These results indicate that cholinergic agonists inhibit Na-K-ATPase activity in MDCK cells by the activation of PKC. It is concluded that the inhibition of Na-K-ATPase by PKC may, in part, be responsible for the natriuretic action of cholinergic agonists, which have been shown to stimulate phosphoinositide hydrolysis in renal collecting duct cells.  相似文献   

15.
The chronotropic effect of angiotensin II (Ang II) was studied in cultured neurons from rat hypothalamus and brain stem with the use of the patch-clamp technique. Ang II (100 nM) increased the neuronal spontaneous firing rate from 0.8 +/- 0.3 (SE) Hz in control to 1.3 +/- 0.4 Hz (n = 7, P < 0.05). The amplitude of threshold stimulation was decreased by Ang II (100 nM) from 82 +/- 4 pA to 62 +/- 5 pA (n = 4, P < 0.05). These actions of Ang II were reversed by the angiotensin type 1 (AT1) receptor antagonist losartan (1 microM). In the presence of tetrodotoxin, Ang II (100 nM) significantly increased the frequency and the amplitude of the Cd2+-sensitive subthreshold activity of the cultured neurons. Ang II also stimulated the subthreshold early afterdepolarizations (EADs) to become fully developed action potentials. Similar to the action of Ang II, the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA, 100 nM) increased the firing rate from 0.76 +/- 0.3 Hz to 2.3 +/- 0.5 Hz (n = 6, P < 0.05) and increased the neuronal subthreshold activity. After neurons were intracellularly dialyzed with PKC inhibitory peptide (PKCIP, 5 microM), PMA alone, Ang II alone, or PMA plus Ang II no longer increased the action potential firing initiated from the resting membrane potential level. However, superfusion of PMA plus Ang II or Ang II alone increased the number of EADs that reached threshold and produced action potentials even in the presence of PKCIP (5 microM, n = 4). The actions of Ang II could also be mimicked by depolarizing pulse and K+ channel blockers (tetraethylammonium chloride or 4-aminopyridine). These results indicate that Ang II by activation of AT1 receptors increases neuronal excitability and firing frequency, and that this may involve both PKC dependent and -independent mechanisms.  相似文献   

16.
The modulation by PKC activators and inhibitors of adhesion, spreading, migration, actin cytoskeleton organization, and focal complex formation in keratinocytes attaching to type I collagen was studied. Two actin microfilament networks, stress fibers and cortical actin, could be distinguished on the basis of cellular distribution and opposite regulation by growth factors, tyrosine kinase inhibitors, and PKC activators. Stress fiber formation was stimulated by growth factors and by PMA (100 ng/ml) and these stimulations were blocked by tyrosine kinase inhibitors (0.3 mM genistein and 1 microM herbimycin A). By contrast, the cortical network occurred in quiescent cells, was unaffected by tyrosine kinase inhibitors, and was broken down after PKC activation by PMA. Spreading, migration, and actin polymerization were completely blocked while adhesion efficacy was significantly decreased by three specific PKC inhibitors. Half-inhibition of migration was obtained with 0.025, 1, and 3 microM concentrations of calphostin C, chelerytrine chloride, and D-erythrosphingosine, respectively, which are concentrations close to those known to inhibit the PKC kinase function in vitro. Paxillin clustering, which was observed even in the presence of tyrosine kinase inhibitors, disappeared only when actin polymerization was completely impaired, i.e., in cells treated with PKC inhibitors or with both tyrosine kinase inhibitors and PMA, which indicated that focal complex formation was highly dependent on microfilament reorganization. The analysis of these data underscores a major regulation function of PKC in the molecular events involved in growth factor and adhesion-dependent regulation of microfilament dynamics.  相似文献   

17.
A variety of intracellular signaling pathways can modulate the properties of voltage-gated ion channels. Some of them are well characterized. However, the diffusible second messenger mediating suppression of M current via G protein-coupled receptors has not been identified. In superior cervical ganglion neurons, we find that the signaling pathways underlying M current inhibition by B2 bradykinin and M1 muscarinic receptors respond very differently to inhibitors. The bradykinin pathway was suppressed by the phospholipase C inhibitor U-73122, by blocking the IP3 receptor with pentosan polysulfate or heparin, and by buffering intracellular calcium, and it was occluded by allowing IP3 to diffuse into the cytoplasm via a patch pipette. By contrast, the muscarinic pathway was not disrupted by any of these treatments. The addition of bradykinin was accompanied by a [Ca2+]i rise with a similar onset and time to peak as the inhibition of M current. The M current inhibition and the rise of [Ca2+]i were blocked by depletion of Ca2+ internal stores by thapsigargin. We conclude that bradykinin receptors inhibit M current of sympathetic neurons by activating phospholipase C and releasing Ca2+ from IP3-sensitive Ca2+ stores, whereas muscarinic receptors do not use the phospholipase C pathway to inhibit M current channels.  相似文献   

18.
The presence of the non-selective protein kinase C (PKC) inhibitors, staurosporine (100 nM) and polymyxin B (100 microM) in cultured human RPE cells for more than 24 h triggers apoptotic death. Apoptosis is characterized by a diminishing number of cells, a labelling of nuclei by the TUNEL method and by observable morphological changes. An inhibitor of PKC and cyclic nucleotide-dependent protein kinases, 1-(5-isoquinolinesulphonyl)-2-methyl piperazine (H-7; 100 microM), was without effect, as was the specific PKC inhibitor, calphostin C (100 nM). The PKC-activating phorbol esters, phorbol-12-myristate-13-acetate (PMA; 1 microM) and phorbol-12,13-dibutyrate (PDB; 1 microM) and the non-tumour-promoting phorbol ester, 4 alpha-PMA (1 microM) were without effect, as was the diacyl glycerol analogue, 1,2-dioctanoyl-snglycerol (DOG; 10 microM). The PKC activators did not attenuate the apoptosis induced by staurosporine or polymyxin B. Furthermore, deprivation of glucose and oxygen (simulated ischemia) for 72 h induced apoptosis: this could be prevented by inclusion of 10% (v/v) foetal bovine serum (FBS) but not by a variety of PKC activators. Six PKC isoenzymes were shown to be present in RPE cells (alpha, beta 1, beta 2, delta, epsilon, E) and only the calcium-dependent cPKC levels changed after treatment with staurosporine or simulated ischaemia. Since only the less selective inhibitors of PKC induced apoptosis, it is suggested that PKC is not involved directly in the induction process of apoptosis in RPE cells. It is possible that the staurosporine and polymyxin B-induced effects of apoptosis in RPE cells are triggered by an unknown kinase-dependent pathway, but whether the 'ischaemia'-induced death is related to this same process remains to be elucidated.  相似文献   

19.
With use of the whole cell patch-clamp technique, effects of the potent muscarinic agonist oxotremorine methiodide (oxo-M) on voltage-activated Ca2+ channel currents were investigated in acutely dissociated adult rat intracardiac neurons. In all tested neurons oxo-M reversibly inhibited the peak Ba2+ current. Inhibition of the peak Ba2+ current by oxo-M was associated with slowing of activation kinetics and was concentration dependent. The concentration of oxo-M necessary to produce a half-maximal inhibition of current and the maximal inhibition were 40.8 nM and 75.9%, respectively. Inhibitory effect of oxo-M was completely abolished by atropine. Among different muscarinic receptor antagonists, methoctramine (100 and 300 nM) significantly antagonized the current inhibition by oxo-M, with a negative logarithm of dissociation constant of 8.3 in adult rat intracardiac neurons. Internal dialysis of neurons with guanosine 5'-(thio)triphosphate (GTPgammaS, 0.5 mM) could mimic the muscarinic inhibition of the peak Ba2+ current and significantly occlude inhibitory effects of oxo-M. In addition, the internal dialysis of guanosine-5'-O-(2-thiodiphosphate) (GDPbetaS, 2 mM) also significantly reduced the muscarinic inhibition of the peak Ba2+ current by oxo-M. Inhibitory effects of oxo-M were significantly abolished by pertussis toxin (PTX, 200 and 400 ng/ml) but not by cholera toxin (400 ng/ml). Furthermore, the bath application of N-ethylmaleimide (50 microM) significantly reduced the inhibition of the peak Ba2+ current by oxo-M. The oxo-M shifted the activation curve derived from measurments of tail currents toward more positive potentials. A strong conditioning prepulse to +100 mV significantly relieved the muscarinic inhibition of peak Ba2+ currents by oxo-M and the GTPgammaS-induced current inhibition. In a series of experiments, changes in intracellular concentration of bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid and protein kinase activities failed to mimic or occlude the current inhibition by oxo-M. The dihydropyridine antagonist nifedipine (10 microM) was not able to occlude any of the inhibitory effects of oxo-M, and oxo-M (3 microM) failed to reduce the slow tail currents induced by the L-type agonist methyl 2,5-dimethyl-4-[2-(phenylmethyl)benzoyl]-1H-pyrrole-3-carboxylate (FPL 64176; 2 microM). However, omega-conotoxin (omega-CgTX) GVIA (1 microM) significantly occluded the muscarinic inhibition of the Ba2+ currents. In the presence of omega-CgTX GVIA (1 microM) and nifedipine (10 microM), oxo-M could further inhibit approximately 20% of the total Ca2+ current. After complete removal of N-, Q-, and L-type currents with use of omega-CgTX GVIA, omega-agatoxin IVA, and nifedipine, 70% of the R-type current (approximately 6-7% of the total current) was inhibited by oxo-M (3 microM). In conclusion, the M2 muscarinic receptor activation selectively inhibits N-, Q-, and R-type Ca2+ channel currents, sparing L-type Ca2+ channel currents mainly via a PTX- and voltage-sensitive pathway in adult rat intracardiac neurons.  相似文献   

20.
It is well-established that in heart, both the L-type Ca2+ channel and the cystic fibrosis transmembrane conductance regulator Cl- channel are regulated by cAMP-dependent phosphorylation. However, it is not clear whether both of these channels are regulated in concert by protein kinase A (PKA) or whether there are mechanisms that independently control the phosphorylation of these two PKA targets. The purpose of this study was to compare the effects of various protein phosphatase and protein kinase inhibitors on these two ionic currents (ICa and ICl) in guinea pig ventricular myocytes to gain insight into these questions. We found that both the stimulation and washout of the effects of isoproterenol on ICl are about twice as fast as the effects on ICa, probably because the dephosphorylation reaction for ICl is faster than that for ICa. In contrast, inhibition of protein phosphatases with 10 microM microcystin stimulated both ICa and ICl, but the stimulation of ICl was much slower and smaller than the stimulation of ICa. The effect of microcystin was inhibited by staurosporine (Ki = 171.5 and 161 nM for ICa and ICl, respectively), suggesting that the stimulation was due to a kinase. The kinase was not protein kinase C (PKC) because it was not inhibited by the specific pseudosubstrate inhibitor of PKC, PKC(19-31), and it was not PKA because it was not inhibited by adenosine 3',5'-cyclic phosphorothioate. These results suggest that although both the Ca2+ and Cl- channels are regulated by cAMP-dependent phosphorylation, another protein kinase may also regulate these channels, and the kinetics of the response of the channels to phosphorylation can be modulated independently by protein phosphatases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号