首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
利用一步碳热还原法制备了Li3-xNaxV2(PO4)3/C(x=0、0.01、0.02、0.03、0.05、0.08、0.10、0.15)复合正极材料,并用X射线衍射、扫描电镜、红外光谱、循环伏安法、电化学阻抗谱和恒电流充放电技术研究了掺杂对材料结构、微观形貌、充放电性能和Li+脱出嵌入过程的影响。研究表明掺杂少量Na+不影响材料Li3V2(PO4)3的基本结构,但可在Li3V2(PO4)3中形成电子缺陷,提高晶体内部原子的无序化程度,降低极化和电荷转移电阻,从而改善材料的电化学性能。与Li3V2(PO4)3/C相比,Li2.98 Na0.02 V2(PO4)3/C在倍率为15C下的第50次放电容量提高12.1mAh/g,具有较好的倍率性能和循环性能。  相似文献   

2.
结合溶胶-凝胶和高温固相合成方法成功制备了橄榄石结构的LiMn0.8Fe0.2PO4/C固溶体材料,X射线粉末衍射(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)表征结果表明纳米尺度的LiMn0.8Fe0.2PO4颗粒均匀分散于原位形成的碳导电网络中。将该纳米复合材料用作锂离子电池正极材料时,充放电曲线中除了对应于Fe3+/Fe2+电对的较短平台(~3.5 V vs Li+/Li)外,更高电压的长平台(~4.1 V vs Li+/Li)对应于LiMn0.8Fe0.2PO4晶格中Mn随Li+脱出嵌入的氧化还原反应,该高的电压平台可明显提高相应锂离子电池的能量密度。此外,使用恒电流间歇滴定技术(GITT)和电化学阻抗谱(EIS)详细研究了LiMn0.8Fe0.2PO4/C电极中锂的化学扩散行为,GITT和EIS所得的锂化学扩散系数DLi分别为5×10-15~1×10-14cm2/s和1.27×10-13~2.11×10-13cm2/s。研究结果表明,DLi值随测试温度的升高而增加,因此可以通过提高工作温度来改善该类材料的电化学性能。  相似文献   

3.
胡传跃  郭军  文瑾  彭秧锡  陈艳 《材料导报》2012,(Z1):199-201
采用液相法合成了锂离子电池Li2Fe0.5Mn0.5SiO4/C正极材料,考察了热处理温度对Li2Fe0.5Mn0.5-SiO4/C电化学性能的影响,运用XRD、SEM、充放电测试方法和循环伏安法表征了Li2Fe0.5Mn0.5SiO4/C的结构和电化学性能。结果表明,合成的Li2Fe0.5Mn0.5SiO4/C晶胞为斜方晶胞结构,属于Pmn21空间群。其中700℃焙烧7h制备的Li2Fe0.5Mn0.5SiO4/C材料具有较好的电化学性能,首次可逆容量为206.2mAh/g,库仑效率为94.9%,循环20次后的可逆容量为145.7mAh/g,Li2Fe0.5Mn0.5SiO4/C中Fe2+/Fe3+和Mn2+/Mn4+电对的氧化峰电位比较接近,均为4.5V(vs Li/Li+),3个还原峰峰电位分别为3.5V、2.9V和2.1V。  相似文献   

4.
以CH3COOLi·2H2O、V2O5、Mn(CH3COO)2·4H2O、(NH4)2HPO4和蔗糖为原料,采用溶胶–凝胶法合成了掺锰磷酸钒锂/碳(Li3V2-2x/3Mnx(PO4)3/C)复合正极材料,用XRD、XPS、SEM、电化学性能对样品进行了表征.测试结果表明,少量锰的掺杂并未改变Li3V2(PO4)3/C的单斜结构,Li3V1.94Mn0.09(PO4)3中的Mn和V分别以+2和+3价存在,其颗粒类似球形,直径比较均匀且小于200 nm,并表现出良好的电化学性能.在0.1C倍率和3.0~4.8 V电压内,该样品的首次充、放电容量分别为182.1和168.8 mAh/g,放电效率高达92.69%,而且100次循环后,其放电比容量仍是首次放电容量的77.4%.  相似文献   

5.
以Li OH·H2O、Fe C2O4·2H2O、NH4VO3和NH4H2PO4为原料,分别以不同聚合度的聚乙二醇(PEG-200、PEG-600、PEG-1000、PEG-2000、PEG-6000)为碳源,通过高温固相法合成0.7Li Fe PO4·0.3Li3V2(PO4)3/C复合正极材料(LFVP/C)。用X射线衍射、拉曼光谱和扫描电镜对材料的结构和形貌进行了表征。充放电测试表明,在电压范围为2.0~4.3 V时,PEG-200为碳源的LFVP/C的复合正极材料具有较高的比容量、优良的循环性能和倍率特性。10C条件下其放电容量可以保持120 m Ah/g。  相似文献   

6.
采用球磨喷雾辅助碳热还原法制备锂离子正极材料Li3V2(PO4)3,并通过金属离子掺杂技术对Li3V2(PO4)3进行改性.采用SEM、CV对掺杂Cr、Ti、Mg的材料(Li3V2(PO4)3(LVP-1)、Li3V1.8Cr0.2(PO4)3 (LVP-2)、Li3V1.8Ti0.2(PO4)3(LVP-3)、Li3V1.8Mg0.2(PO4)3(LVP-4))进行了形貌分析和电化学性能研究.结果表明:掺杂少量的Cr离子不影响材料的形貌,掺杂Ti、Mg离子改变了晶体材料的粒径;在充放电测试分析中,纯相材料的放电容量较高,但纯相材料的容量保持率比其他3种材料低;倍率性能测试同样表明Li3V1.8Mg0.2(PO4)3材料放电容量大且循环性能好.  相似文献   

7.
采用聚合热解法制备了掺入3%Al3+的富锂锰基Li[Li0.2Co0.13Ni0.13Mn0.51Al0.03]O2材料,经过X射线衍射(XRD)、扫描电镜(SEM)实验表明,掺入3%Al3+样品仍然保持层状结构,没有观察到杂质相的存在。在2.0~4.8 V范围内进行恒流充放电测试表明,掺Al3+样品在30 mA/g的电流密度下,首周充放电比容量可达349.1和303.8 mAh/g(首次库仑效率87%);在100 mA/g的电流密度下,100次循环后,容量保持率为91.7%,显示出高的循环稳定性。这些结果表明掺杂Al3+能够在一定程度上提高富锂氧化物材料层状结构的稳定性,为发展高容量和高稳定性正极材料提供一种新途径。  相似文献   

8.
以FePO4·xH2O、V2O5、NH4H2PO4和Li2CO3为原料,以乙二酸为还原剂,在常温常压下经机械活化并还原嵌锂,形成无定形的5LiFePO4·Li3V2(PO4)3前驱体混合物,然后低温热处理合成出晶态的复合正极材料5LiFePO4·Li3V2(PO4)3.分别研究了复合材料的物相结构、形貌、电化学性能.SEM图像表明合成的材料粒径小、分布均匀,一次粒径为100~200nm.充放电测试结果表明,650℃烧结12h制得的复合正极材料5LiFePO4·Li3V2(PO4)3电化学性能优良,1C放电比容量高达158mAh/g,达到该复合材料的理论比容量(156.8mAh/g).复合材料具有良好的倍率性能和循环性能,在10C放电比容量高达114mAh/g,100次循环后容量几乎无衰减.循环伏安测试表明,复合材料的脱嵌锂性能优良,且明显优于单一的LiFePO4和Li3V2(PO4)3.  相似文献   

9.
采用球磨-固相法,对Mn位进行Fe、Mg共掺杂,合成锂离子电池正极材料Li Mn0.7Fe0.3-xMgxPO4/C(x=0.00,0.02,0.04,0.06)。利用X射线衍射、扫描电镜对其结构和形貌进行表征;利用电池充放电测试系统和电化学工作站对其进行电化学性能测试。结果表明,Li Mn0.7Fe0.3-xMgxPO4/C呈现单相橄榄石结构;所得材料粒径分布均匀,在100 nm左右。经Fe、Mg共掺杂后材料综合电化学性能明显提高,其中Li Mn0.7Fe0.26Mg0.04PO4/C材料的性能最佳,在0.1,0.2,0.5,1和2 C倍率下的放电比容量分别为159.7,154.3,148.2,143.9和134.7 m Ah/g,1 C倍率下电池循环50次后的容量保持率为94.5%,倍率性能优异。  相似文献   

10.
以Li2CO3、FeC2O4·2H2O、MnCO3和NH4H2PO4为原料,按5:6:4:10的摩尔比混合,采用固相反应和水热法结合的新方法制备得到LiMn0.4Fe0.6PO4。通过XRD、SEM、TEM以及循环伏安(CV)和充放电测试对材料进行结构、形貌以及电化学性能表征。结果表明,此方法合成的产物具有单一的橄榄石晶体结构,颗粒尺寸约为120 nm,且表面均匀包覆一层无定形碳。电化学测试结果表明,样品的循环伏安曲线中有两对氧化还原峰,分别对应Fe3+/Fe2+(3.5 V)和Mn3+/Mn2+(4.0 V)。LiMn0.4Fe0.6PO4/C在0.1C下的初始放电比容量为160 mAh/g,0.5C下的初始放电比容量为143 mAh/g,且具有较好的循环性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号