首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
前置掺气坎与首级阶梯对阶梯溢流坝的掺气消能有着重要的影响作用,该文以水工模型试验为依托,结合某水电站,确定模型几何比尺为Lr=60。通过对Y型宽尾墩+阶梯溢流坝+消力池的联合消能工过渡阶梯上首级台阶台面上挑5°、10°及15°和前置掺气坎角度取8°和10°,共六种组合方案分别进行了水工模型试验。并从空腔长度、掺气浓度、台阶负压、底板时均压力和消能率等各个方面,寻找能改善掺气特性的过渡台阶衔接体型。结果表明:随着前置掺气坎角度增大,首级台面角增加不超过10°时,阶梯溢流坝面上底空腔长度和掺气浓度逐渐增大,负压减小,可有效保护阶梯,防止空蚀破坏。且流速减小,压强增大,消能率也随之略有增长,更利于对下游的保护作用。故前置掺气坎为10°,首级台阶台面角为10°时即方案五为最优组合方案。  相似文献   

2.
为了研究阶梯溢流面前几级阶梯与前置掺气坎的不同布置,对宽尾墩+阶梯溢流面+消力池一体化消能工负压及消能率的影响,该文运用水汽两相VOF方法的三维RNGκ-ε模型,对无掺气坎的均匀阶梯、有掺气坎的均匀阶梯(原型方案)、无掺气坎的首级大台阶及有掺气坎的首级大台阶四种方案进行数值模拟,并采用原型方案的水工模型试验验证了模型计算结果的准确性。结果表明:无前置掺气坎的方案一及方案三的WES曲面及阶梯溢流面存在较大负压,无前置掺气坎条件下首级大台阶的设置能减小阶梯溢流面最大负压,但增大了WES曲面最大负压。其中方案一及方案三的WES曲面最大负压分别为-4.32 KPa和-5.03 KPa,阶梯溢流面最大负压分别为-11.1 KPa和-9.19 KPa。有前置掺气坎的方案二及方案四的WES曲面及阶梯溢流面下游不存在负压,最大负压出现在首级阶梯,分别为-9.52 KPa和-0.842 KPa。前置掺气坎与首级大台阶结合的方案四可有效提高消能率,显著减小溢流坝面负压分布范围及负压值。四种方案中,方案四消能率最大,为62.23%,比无前置掺气坎条件下均匀阶梯的方案一消能率58.52%,增大了6.34%。  相似文献   

3.
宽尾墩+阶梯溢流坝+消力池联合消能方式在宣泄高水头、大单宽流量时出现坝面掺气不充分及空化空蚀问题。该文通过水工模型试验,对比分析三种过渡阶梯与阿海原型工况共4种方案下,掺气空腔、台阶面负压及沿程时均压强等水力特性。试验结果表明:各方案的最大负压均出现在首级台阶立面,方案三由4个25 mm×18.75 mm(高×宽)台阶组成的过渡阶梯产生的最大负压最小,为-0.11 kPa,比原型方案由6个16.67 mm×12.50 mm(高×宽)台阶组成过渡阶梯产生的最大负压减少了0.19 kPa,比方案四由3个33.33 m×25 mm(高×宽)台阶组成的过渡台阶减少了0.08 kPa。从消能方面看,方案三的消能效果最佳,消能率为63.19%,比方案二的消能率62.38%增加了1.3%,比方案四的消能率63.03%增加了0.25%。因此,适度增大过渡台阶尺寸,有利于阶梯面与挑射水流之间形成足够、稳定的气体空腔,减少台阶面负压,相应地提高了消能效果。  相似文献   

4.
基于阿海水电站一体化联合消能工,采用三维数值模拟探讨过渡阶梯不同台阶尺寸对一体化联合消能工坝面掺气及负压特性的影响。结果表明,随着过渡阶梯台阶尺寸的增大,阶梯坝面掺气空腔长度、掺气空腔面积和沿程掺气浓度逐渐增大;坝面最小掺气空腔不在水舌对称中心剖面,而在每股对冲水流的中心剖面处产生。当过渡阶梯台阶尺寸较小时,负压等值线分布在过渡阶梯的前几级台阶,随着过渡阶梯台阶尺寸的增大,负压等值线均分布在过渡阶梯的首级台阶内;首级台阶竖直壁面上边缘水气掺混区压强变化梯度最大;增大或减小过渡阶梯台阶尺寸,均有助于减小阶梯溢流坝面负压。故适当增大过渡阶梯台阶尺寸,既有助于提高坝面掺气效果,又可以减小坝面负压从而有效避免空蚀空化破坏。  相似文献   

5.
在宽尾墩+阶梯溢流坝+消力池一体化消能工中利用前置掺气坎连接WES曲面与阶梯溢流坝,能有效增加阶梯面掺气,避免阶梯遭受空化空蚀破坏。主要引用水气两相流VOF方法的RNG k-ε模型,采用几何重建方式对水气面附近进行插值以及利用PISO算法和非定常流算法进行数值模拟,模拟前置掺气坎角度8°,10°和11.3°时阶梯溢流坝上坎后掺气空腔长度及阶梯面压力分布,模拟范围从库区至消力池尾部。为验证模拟计算的可靠性,对阶梯溢流坝坎后掺气空腔进行模型试验,通过坎后空腔长度模拟值与实测值的对比分析,发现两者吻合较好,最大偏差为7.9%。模拟结果表明,掺气空腔长度随前置掺气坎角度的增加而增加,阶梯近壁面最大负压绝对值及压力随前置掺气坎角度的增加而增加且负压分布范围逐渐扩大。  相似文献   

6.
结合某中低水头水库工程的岸边溢洪道,以水流流态衔接、减小消力池规模为控制指标,采用物理模型试验比较了采用"光滑溢洪道+底流消力池"与"前置掺气坎式阶梯溢洪道+底流消力池"两种消能方案的优劣,对不同布置方案在不同运行工况下的水流流态、入池流速与消能率等水力学指标进行详细对比分析。研究成果表明:采用前置掺气坎式阶梯溢洪道后,消力池长度能缩短57.1%,入池流速减小最大达51.18%,综合消能率大于84%。同时,前置掺气坎式阶梯溢洪道使阶梯泄槽内掺气更充分,继而可减小发生空蚀破坏的可能性。研究成果可为类似工程设计提供一定的参考。  相似文献   

7.
将掺气坎布置在宽尾墩出口和阶梯溢流坝首级台阶的中间位置,能有效减小高坝泄水建筑物在高速水流作用下发生空蚀和冲刷破坏的概率。利用水气两相流模型并联合RNG k-ε模型,模拟计算不同前置掺气坎角度对溢流坝阶梯面掺气浓度和消能特性的影响,前置掺气坎角度依次取8°,10°和11.3°。其中模型采用VOF方法对自由水面进行处理,利用几何重建方式对水气面附近进行插值,采用PISO算法和非定常流算法进行计算。模拟计算结果表明,在不同前置掺气坎角度下,阶梯面平均掺气浓度沿程变化趋势为总体减小并在后几级台阶处保持不变;在靠近掺气空腔后的台阶处,沿阶梯水平近壁面凹角到凸角方向,掺气浓度的变化趋势为先减后增,而沿阶梯面垂直近壁面凹角到凸角方向,掺气浓度的变化趋势为先增后减,且同一断面的掺气浓度随前置掺气坎角度的增加而逐渐增加;在靠近反弧段的阶梯上,沿阶梯水平近壁面凹角到凸角方向,掺气浓度的变化趋势为逐渐增大,而沿阶梯面垂直近壁面凸角到凹角方向,掺气浓度的变化趋势为逐渐减小,随着前置掺气坎角度的增加,同一断面掺气浓度随着增大,且泄水建筑物消能率随之增大。  相似文献   

8.
《人民黄河》2014,(6):110-112
将掺气坎设置于阶梯溢流坝闸墩出口处,有利于阶梯掺气,避免阶梯空蚀空化。通过1∶25模型试验,在宽尾墩阶梯溢流坝上设置不同体形的前置掺气坎,研究了掺气坎高度变化对坎后有效空腔长度、空腔最大高度、下游坝面掺气浓度沿程分布、水舌冲击力大小的影响,并与未设掺气坎体形时对应的水力学参数进行了对比分析。结果表明:与未设掺气坎相比,增设掺气坎后阶梯沿程掺气浓度增长明显;有效空腔长度随坎高的增大而增大,空腔最大高度随坎高的增加无明显变化;随着坎高增加,水舌冲击力相应增加,对于53°的溢流坝面,坎高超过1.2 m后,水舌冲击压强将大于20×9.8 kPa。  相似文献   

9.
带尾坎的阶梯溢洪道是一种新兴的阶梯溢洪道,在一定条件下可提高掺气效果和消能率,但是对于该种溢洪道内水流三维结构、压强分布以及尾坎参数对相关水力学指标的影响的研究甚少。为此,采用三维紊流数值模拟的方法计算了不同尾坎高度的阶梯溢洪道内水流流态、压强分布、流场结构、旋涡结构、消能效果等。研究结果表明:增加尾坎高度会抬升水面高程,但对水面形态影响较小;台阶水平面上压强分布呈"凹"形曲线,最小值出现在台阶中部,台阶竖直面压强最小值出现在其顶部,且台阶水平面、竖直面上压强均随尾坎高度增大而增大;旋涡强度和尺度随着尾坎高度增大而增大,但是主流流速分布无明显变化;消能率随尾坎高度增大呈上升趋势,但是变幅较小。  相似文献   

10.
台阶式溢洪道消能效果与其台阶段泄槽掺气浓度密切相关,通过调整掺气坎体型以达到使台阶段泄槽充分掺气,消能率增大。试验研究发现,与原方案台阶段消能率相比较,除设计水位工况消能率有所下降外(小了4.74%),校核水位工况和校核流量工况的消能率分别提高了6.18%和6.64%。设计水位工况消能率减小可能与推荐方案台阶个数减少有关,而校核水位工况消能率增大则说明台阶段的掺气有利于消能。  相似文献   

11.
结合梅州抽水蓄能电站泄洪建筑物水工模型试验,确定在表孔堰面曲线末与阶梯连接处增设过渡阶梯、阶梯与护坦间采用反弧衔接、底孔纵向布置调整及出口窄缝挑坎的体型,对阶梯溢流面流态、流速、消能率进行研究探讨。成果表明,阶梯溢流面水流均匀滑行、掺气充分、流态平稳,护坦处水流衔接较好;底孔窄缝挑坎水舌纵向扩散效果较好,下游冲刷较轻;阶梯消能率呈现出随单宽流量增大而减小的变化规律。  相似文献   

12.
台阶式溢洪道掺气效果直接影响其消能率。文章对台阶式溢洪道掺气设施进行水工模型试验,从掺气坎水流流态、空腔长度、空腔稳定性、通气井风速及台阶段掺气情况看,掺气坎体型是合理的,通气井风速满足规范要求。掺气设施的布置,以期为类似工程提供参考。  相似文献   

13.
贾洪涛 《人民长江》2019,50(7):189-194
〗坎式阶梯溢洪道具有较高的掺气效率,然而目前为止对其详细流场结构以及消能特性开展的研究尚不多见。为此结合VOF法,采用标准k-ε紊流模型对带尾坎的阶梯溢洪道进行了三维数值模拟,研究了不同尾坎位置对其水力特性的影响。结果表明:随着尾坎向上游移动,水面线和尾坎下游侧的旋涡大小均无明显变化,但尾坎上游侧的旋涡尺度逐渐减小;对于不同体型,同一台阶凸角上流速呈先增加后不变的规律,而对于同一体型,下游台阶凸角上流速大于上游的;台阶水平面上最大压强先增加后不变,台阶竖直面上最小压强逐渐减小,而尾坎下游侧竖直面上最小压强则呈增加的趋势;台阶面上最大紊动能耗散率逐渐增加,而尾坎上的则相反,总的消能率变化甚微。  相似文献   

14.
碾压混凝土坝的宽尾墩一体化消能工通常根据碾压混凝土分层高度和通仓碾压的施工特点采用台阶溢流面,而常态混凝土坝多采用光滑溢流面。在DG水电站的可研阶段对上述方案进行了比选,招标技施设计阶段采用大比尺模型对推荐碾压混凝土方案的台阶溢流面+X型宽尾墩的挑坎掺气空腔、台阶面掺气浓度等方面做了进一步的论证和优化。研究表明,台阶溢流面能够有效削弱X型宽尾墩下部开口水舌的动水垫作用和附壁效应,掺气效果及消能效果较好。  相似文献   

15.
为研究复杂边界条件下气液两相界面的流动及混掺现象对工程建设的影响,结合某大型水电站的溢洪道,利用RNG k-ε模型对其进行三维流场模拟,采用有限体积法离散控制方程,并用GMRES算法进行压力求解,对前置掺气坎式阶梯溢洪道和传统阶梯溢洪道泄流壁面上的高速掺气水流进行数值模拟。结果表明:随着掺气坎坡度的增加,其掺气空腔及掺气浓度均有所增大,随着水流下泄掺气浓度沿程降低,达到一定距离后趋于稳定,掺气浓度值达到了减免空蚀破坏的要求;与传统阶梯溢洪道的模拟结果进行对比可知,增设前置掺气坎后,既可以增加前几级阶梯的掺气浓度使水流提前达到水气平衡,也没有降低阶梯式溢洪道的消能率,为解决传统阶梯溢洪道中出现的工程难题提供了一种新思路。  相似文献   

16.
通过模型试验、原体观测资料的分析发现,与宽尾墩联合使用的阶梯式消能工,为了满足溢流面水流掺气减蚀的要求,须使阶梯溢流面在初始段6~8个台阶形成空腔溢流,而阶梯堰面形成空腔溢流与阶梯起始断面的掺气坎型、坎高及宽尾墩型式有关。台阶高度对阶梯溢流面大单宽过流掺气浓度沿程变化影响很小,掺气浓发随阶梯溢流面坡比的变化比较明显,坡度越缓,沿程衰减越明显;掺气浓度随堰上水头的增加而增大;堰面使用Y型宽尾墩掺气量最大,无墩时最小,使用X墩时,处于二者之问。与宽尾墩联合使用的阶梯溢流面大单宽过流掺气量可以满足减蚀需要,而无  相似文献   

17.
掺气坎空腔长度是控制掺气减蚀效果的一个重要参数.影响掺气坎空腔长度的因素众多,其中一个是空腔内负压,而空腔内负压又与通气孔的面积有关.通过水槽试验,研究了不同流量、挑坎高度、挑坎坡度、水槽底坡等因素发生变化时,通气孔面积对空腔长度的影响.试验结果表明:通气孔大小对空腔长度的影响明显,在其他条件不变时,通气孔的面积越大,形成的空腔长度就越长,但当通气孔面积大于一定数值后,空腔长度将不再增加.因此在工程中,必须保证合适的通气孔面积,以形成良好的掺气空腔,有效地完成掺气减蚀.  相似文献   

18.
开敞式宽大单泄槽溢洪道与一般溢洪道相比易发生水流流态复杂、掺气效果差等工程安全问题。以马来西亚Baleh水电工程为例,采用VOF法与RNG k-ε双方程紊流模型对溢洪道流场进行三维数值模拟。计算分析了不同工况下溢洪道流态、流速、沿程压强等水力特性的分布规律。同时开展1∶50物理模型试验,对比分析数值模拟结果与模型试验结果发现,两者基本一致,验证了开敞式宽大单泄槽溢洪道水力特性数值模拟的准确性与可行性。进而利用紊流模型计算分析了溢洪道掺气坎的优化布置方案,结果表明:1#掺气坎抬高20 cm后,坎后掺气空腔长度由11.03 m增大至19.84 m,消能率提高了6.11%;3#掺气坎沿泄槽陡坡上移15 m后,挑流水舌冲击位置上移,减轻了对挑流鼻坎段水流流态的影响。研究结果对同类工程的优化设计有一定的借鉴作用。  相似文献   

19.
通过建立溢洪道物理模型,在台阶坡度恒定条件下,试验采用0.65、1.0和1.3 m三种台阶高度,研究不同水位下的消能效率、掺气状况及水流流态,研究表明:同一台阶消能率与单宽流量成反比,单宽流量越大,消能效果越差;对不同台阶高度,台阶高度越高,消能率也越大。增加掺气坎,可使水流充分掺气,水流流态良好,可保证台阶面安全可靠运行。  相似文献   

20.
通过模型试验研究了阶梯式溢洪道水平面的时均压强,结果表明:阶梯式溢洪道水平面上可能产生负压,负压主要位于水平面上距离阶梯凹角0.2~0.5倍水平阶梯长度处;整个阶梯式溢洪道水平面上最大负压位于2#或者3#阶梯上,掺气均匀段阶梯水平面上基本没有负压产生;阶梯水平面上的压强具有间隔相似性;单宽流量越大,水平面阶梯上压强最大值越大、最小值越小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号