首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
艾罡 《陶瓷》2020,(1):23-29
笔者以均苯四甲酸二酐(PMDA)和4,4’-二氨基二苯醚(ODA)为单体,以N,N’-二甲基二苯醚(DMAc)为溶剂,制备聚酰胺酸溶液。在此过程中,采用原位聚合法在酰胺酸溶液中加入氧化铝(Al2O3),通过热亚胺化处理制备得到氧化铝/聚酰亚胺(Al2O3/PI)杂化薄膜。用傅立叶变换衰减透射射红外光谱(ATR/FTIR)、静态热机械分析(TMA)、力学性能测试等手段对PI/Al2O3杂化薄膜结构和性能进行表征。红外分析表明,杂化薄膜热亚胺化完全,杂化反应充分进行,并且Al2O3和PI基体之间形成键接;TMA分析表明,PI/Al2O3杂化薄膜的热膨胀系数随氧化铝含量的增加而减小;常温拉伸性能测试表明,随着Al2O3量的增加,PI杂化薄膜弹性模量逐渐增大,而拉伸强度和断裂伸长率呈下降趋势;玻璃化转变温度测试表明,杂化Al2O3之后的玻璃化温度不是很明显;热重分析表明,引入一定量的Al2O3,薄膜的热分解温度降低。而含有10%氧化铝的杂化薄膜各项性能都表现出相对优良的性能。  相似文献   

2.
制备了一系列基于异构联苯二酐[2,2’,3,3’-联苯四甲酸二酐(3,3’-BPDA)、2,3’,3,4’-联苯四甲酸二酐(3,4’-BPDA)和3,3’,4,4’-联苯四甲酸二酐(4,4’-BPDA)]的聚酰亚胺(PI)均聚物和共聚物,比较研究了这些聚合物的热学和力学性能。结果表明,当二胺结构相同时,基于3,3’-BPDA和3,4’-BPDA的PI均聚物或共聚物较基于4,4’-BPDA的均聚物有更高的玻璃化转变温度(Tg)和更好的热加工性;当二酐结构相同时,基于对苯二胺(PDA)的PI的Tg高于基于4,4’-二氨基二苯醚(ODA)的PI。基于3,4’-BPDA/PDA的PI具有最高的Tg,其值为382℃,由其制备的薄膜的拉伸强度为100 MPa,拉伸弹性模量为1.8 GPa,断裂伸长率为12%。基于4,4’-BPDA/PDA的PI薄膜具有最高的拉伸性能,其拉伸强度为307 MPa,拉伸弹性模量为4.1 GPa,断裂伸长率为23%。基于3,4’-BPDA/ODA和3,3’-BPDA/4,4’-BPDA(1/1)/ODA的PI模塑料均具有高于300℃的Tg和较好的力学性能,其冲击强度分别达到82.3 kJ/m2和94 kJ/m2。  相似文献   

3.
使用4,4′-(六氟异丙烯)二酞酸酐(6FDA)、3,3′,4,4′-二苯酮四酸二酐(BTDA)、4,4′-二胺基二苯醚(ODA)、顺-5-降冰片烯-内型-2,3-二羧酸酐(NA)为反应单体,采用两步聚合法合成了系列聚酰亚胺树脂,并通过添加SiO_2-g-DOPO(二氧化硅-g-9, 10-二氢-9-氧杂-10-磷杂菲-10-氧化物)制备了聚酰亚胺基杂化材料,表征了杂化材料的耐热性能,研究了树脂结构及SiO_2-g-DOPO填充量对杂化材料性能的影响。结果表明:以6FDA/BTDA为基体,添加SiO_2-g-DOPO质量分数为10%时,所制备的杂化材料性能最佳,5%热失重温度为540℃,玻璃化转变温度为320℃,线烧蚀率为-4.200 0 mm/s,质量烧蚀率为0.008 2 g/s;与传统酚醛材料相比,杂化材料烧蚀隔热性能显著提高。  相似文献   

4.
余彬  蒋彩荣  汪称意  赵晓燕  李坚  任强 《精细化工》2019,36(12):2406-2410,2430
以2,2′-双(三氟甲基)-4,4′-二氨基联苯(TFMB)、4,4-二氨基二苯醚(ODA)和3, 3′,4,4′-二苯醚四甲酸二酐(ODPA)为原料,间甲酚为溶剂,按不同的配比,采用一步法制备了一系列低成本含氟共聚型聚酰亚胺CPI-1~CPI-4,进一步制备成膜。通过红外光谱仪、核磁共振波谱仪对该系列含氟聚酰亚胺的结构进行了表征确认。采用UV光度计、TGA、DSC、拉伸性能试验机对其溶解性能、光学性能、热性能、机械性能进行了测试。结果表明,该系列含氟聚酰亚胺室温下能溶于二甲基亚砜(DMSO)、N,N-二甲基乙酰胺(DMAc)、三氯甲烷(CHCl_3)等有机溶剂,具有较好的溶解性和成膜性。所制薄膜具有优良的光学透明性,在紫外光波长400nm时的透光率均在70%以上。CPI-1~CPI-4的起始分解温度均大于500℃,N_2氛围下800℃的质量残留百分数均在52%以上,玻璃化转变温度在166~170℃。此外,CPI-1~CPI-4薄膜的拉伸强度在89.8~105.3MPa,弹性模量在1.3~1.7 GPa,断裂伸长率在9.7%~18.4%,表现出较好的机械性能。  相似文献   

5.
以均苯四羧酸二元酐-4,4’-二氨基二苯醚(PMDA-ODA)型聚酰亚胺为研究对象,加入不同含量和不同长径比的表面处理之后的碳纤维(CF),采用直接法制备聚酰亚胺/碳纤维(PI/CF)复合薄膜。热酰亚胺化时采用的升温工艺条件:以5℃/min的升温速率从室温升至300℃,恒温30 min。通过各种表征手段,对比讨论碳纤维添加量和长径比对复合薄膜的影响。对制备的PI/CF复合薄膜进行偏光、红外、XRD、拉伸测试。实验结果表明:碳纤维的加入可以诱导聚酰亚胺分子结晶;聚酰亚胺薄膜的聚集态结构和性能受碳纤维的添加量,长径比等的影响。随着碳纤维含量的增加复合薄膜的力学性能先随之增强后又减弱。因此,碳纤维含量过多或过少都不利于增强复合薄膜的力学性能及复合薄膜规整结晶结构的形成。碳纤维长径比越大有助于复合薄膜的力学性能的提高;当添加量为3%时所制备的复合薄膜的聚集态结构较为规整,结晶程度较高,拉伸性强度为96.37 MPa,弹性模量为1 949.97 MPa,断裂伸长率为5.914%。  相似文献   

6.
以均苯四甲酸二酐(PMDA)为二酐单体,对苯二胺(p-PDA)、2-(4-氨基苯基)-5-氨基苯并噁唑(BOA)和2-(4-氨基苯基)-5-氨基苯并咪唑(BIA)为二胺单体,制备了聚酰亚胺(PI)树脂和薄膜,又采用三辊机制备了PI/SiO_2杂化树脂和薄膜。利用傅里叶红外光谱对材料的结构进行了表征,结果表明薄膜完全亚胺化,且SiO_2存在于PI基体中。此外,还研究了PI和PI/SiO_2杂化薄膜的热学性能和力学性能。随着2种不同粒径SiO_2的加入,PI/SiO_2杂化薄膜的耐热性能得到明显改善。与纯PI相比,PI/SiO_2杂化薄膜的玻璃化转变温度上升3~16℃,1%热失重温度提高了14~30℃,而且线性热膨胀得到抑制,PI-R106-5的线性热膨胀系数(CTE)仅为2.59×10~(-6)/℃。但是,PI/SiO_2杂化薄膜的力学性能相对于纯PI薄膜有所降低,未来应继续提高其相容性。  相似文献   

7.
使用两步法,以环丁烷四甲酸二酐(CBDA)为二酐,分别与4,4′-二氨基二苯醚(ODA)、4,4′-亚甲基双(2-乙基)苯胺(M-OEA)、4,4′-亚甲基双(2,6-二乙基苯胺)(M-DEA)、4,4′-二氨基苯酰替苯胺(DABA)、4,4′-二氨基-2,2′-二甲基-1,1′-联苯(M-Tol)合成一系列浅色透明的聚酰亚胺。通过红外光谱仪、紫外可见光谱仪、X射线衍射仪、差示扫描量热仪、静态热机械分析仪、热失重分析仪和万能材料试验机对薄膜进行表征分析。结果表明:薄膜已亚胺化完全,整体为无定形结构,玻璃化转变温度(Tg)最高可达259.18℃,初始分解温度在450℃以上,800℃的质量残留率最高为58.98%,热膨胀系数(CTE)最低为22.31×10-6-1,断裂伸长率在2.21%~10.62%范围内,具有良好的力学性能,薄膜在450 nm处的紫外光透过率最高可达89.07%。  相似文献   

8.
采用无机添加剂二氧化硅(SiO_2)用于聚对苯二甲酸乙二醇酯(PET)扁丝的改性。通过20 L聚合反应釜制备不同SiO_2含量PET,再经铸片、裂膜、拉伸工艺制备PET扁丝,研究了SiO_2含量对PET扁丝力学性能及后加工性能的影响。结果表明:随着拉伸倍数的提高,不同SiO_2含量PET扁丝的拉伸强度均呈逐渐增大趋势,而断裂伸长率均呈逐渐降低趋势;在一定拉伸倍数下,随着SiO_2含量增加,PET扁丝拉伸强度先升高后降低,在SiO_2质量分数为0.3%时PET扁丝拉伸强度最高;设定PET扁丝拉伸强度为400 MPa或断裂伸长率为25%,在SiO_2质量分数为0.3%时PET扁丝所需拉伸倍数均最小;随着SiO_2含量增加,PET扁丝的屈服强度和屈服伸长率均先增大后减小,SiO_2质量分数0.3%时所得PET扁丝具有较好的屈服性能。  相似文献   

9.
为了改善聚乳酸(PLA)塑料包装薄膜的力学、阻隔等性能,将二氧化硅(SiO_2)无机粉末与其复合,并以3-氨丙基三乙氧基硅烷(APTS)作为界面改性剂,采用流延法制备了不同配比的PLA/SiO_2生物可降解复合包装薄膜。研究了SiO_2的添加量对生物可降解PLA包装薄膜的热行为、力学性能及阻隔性能的影响。热重分析法(TG)测试表明,SiO_2的加入使得PLA/SiO_2复合包装薄膜的热稳定性明显提高;示差扫描量热法(DSC)测试表明,SiO_2的加入使得PLA/SiO_2复合包装薄膜的玻璃化转变温度(Tg)和结晶温度(Tc)降低,熔融温度(Tm)基本不变;薄膜的拉伸性能测试表明,随着SiO_2的加入和含量的增加,PLA/SiO_2复合包装薄膜的拉伸强度、拉伸模量以及断裂伸长度均有不同程度的提高;阻隔性能测试表明,当加入SiO_2后,复合薄膜的阻湿、阻氧性能得到改善,并且当SiO_2的含量为5%时,复合薄膜的阻湿、阻氧性能最佳。  相似文献   

10.
PF/NBR/SiO2三元杂化网络结构复合材料的研究   总被引:1,自引:0,他引:1  
在理论分析的基础上,提出了PF/NBR/SiO2三元杂化网络结构复合材料的微观聚集态模型;通过溶胶一凝胶反应使正硅酸乙酯在酚醛树脂(PF)中发生原位聚合反应,制得PF/二氧化硅(SiO2)二元杂化复合材料;再将PF/SiO2二元杂化复合材料与丁腈橡胶(NBR)混炼杂化,制得PF/NBR/SiO2三元杂化网络结构复合材料。性能测试结果表明,与不合SiO2的PF/NBR复合材料相比,PF/NBR/SiO2三元杂化网络结构复合材料的密度、冲击强度、拉伸强度、拉伸弹性模量及断裂伸长率、玻璃化转变温度均有较大提高。  相似文献   

11.
共聚与机械共混对PMDA/ODA型聚酰亚胺性能的影响   总被引:1,自引:0,他引:1  
针对均苯四甲酸二酐/二氨基二苯醚(PMDA/ODA)型聚酰亚胺(PI)难以溶解或熔融、柔韧性较差,以1,3-双(4氨-基苯氧基)苯(BAPB134)、ODA和PMDA为原料,通过共缩聚和机械共混分别制备了一系列共聚聚酰亚胺(CoPI)和共混聚酰亚胺。采用IR、TGA、DSC、XRD和拉伸等手段,对其结构和性能进行了研究。结果表明,CoPI薄膜为非晶态结构,玻璃化转变温度和起始分解温度分别在322℃和544℃以上,断裂伸长率由12%平均提高到54%,拉伸强度均超过100 MPa,但弹性模量平均降低了29%;共混PI的聚集态结构和性能与PMDA/ODA型PI相近。  相似文献   

12.
以4,4'-二氨基二苯醚(ODA)和均苯四甲酸二酐(PMDA)为单体,以聚苯胺-二氧化钛(PANI-TiO_2)为掺杂物,用原位聚合和超声振荡法制得聚酰胺酸/聚苯胺-二氧化钛溶液,经热亚胺化制得聚酰亚胺/聚苯胺-二氧化钛(PI/PANI-TiO_2)复合薄膜。采用FTIR、SEM、TG-DTG、介电常数、电子万能试验机等对复合薄膜的结构、形貌和性能进行了表征与测试。结果表明:PI/PANI-TiO_2薄膜的热亚胺化完全,PANI-TiO_2粒子在PI基体中分布均匀。掺杂10%(以反应制得PI的质量为基准,下同)PANI-TiO_2的PI/PANI-TiO_2复合薄膜的综合性能优于纯PI,其拉伸强度由纯PI的14.8 MPa提高到43.8 MPa;初始分解温度由纯PI的435℃提高到518℃,800℃时的残炭量达到57.7%;介电常数由3.38提高到3.86,介电损耗由0.0013提高到0.0040。  相似文献   

13.
利用均苯四甲酸二酐(PMDA)、4,4'-二氨基二苯醚(4,4'-ODA)和自制三单体在强极性非质子有机溶剂N,N-二甲基乙酰胺(DMAc)中进行共缩聚反应,制得高粘度的聚酰胺酸(PAA)溶液,经涂膜、热亚胺化,得到坚韧透明的聚酰亚胺(PI)薄膜,其具有较好的拉伸断裂强度和合适的伸长率;同时将得到的PAA溶液进行湿法纺丝,制成PAA纤维,采用热亚胺化和高温拉伸的方法制得PI纤维,其断裂强度能达到3.67cN/dtex。  相似文献   

14.
以二胺单体2,2′-对苯基双-(5-氨基苯并咪唑)(PBABI)、 1,4-二氨基苯二胺(p-PDA)与二酐单体3,3′,4,4′-联苯四甲酸二酐(BPDA)进行共聚,制备高相对分子质量的聚酰亚胺(PI)前驱体聚酰胺酸(PAA),再通过热酰亚胺化的方式得到含苯并双咪唑重复单元的高阻燃共聚PI薄膜;研究了PI薄膜的聚集态结构、化学结构、热稳定性、阻燃性能和力学性能。结果表明:随着苯并双咪唑单体的增多,PI薄膜逐渐从有序堆积向无定型结构演变;苯并双咪唑结构促进了PI薄膜体系中形成分子间氢键作用;苯并咪唑的引入使PI薄膜的最大热分解温度提高5℃、玻璃化转变温度提升90℃、拉伸强度提高126 MPa,同时含苯并双咪唑的PI薄膜表现出优异的阻燃性能,极限氧指数提高到54%。  相似文献   

15.
采用4,4′-氧双邻苯二甲酸酐(ODPA),对苯二胺(PDA)以及4,4′-二氨基二苯醚(ODA)为反应单体合成聚酰胺酸。涂覆法制备单面2层挠性覆铜板,继续高温压合得到高剥离强度的2层双面挠性覆铜板,并将聚酰胺酸热亚胺化得到聚酰亚胺薄膜。利用傅里叶红外光谱(FTIR)、差示扫描量热仪(DSC)等对覆铜板及聚酰亚胺薄膜的性能进行表征。结果表明:15MPa,230℃,20min下压合制备的2层双面挠性覆铜板,其剥离强度达到1.2kN/m,双面板之间的薄膜基本酰亚胺化,拉伸强度超过100 MPa。  相似文献   

16.
《粘接》2015,(10)
以自制的端异氰酸酯基聚丁二烯(ITPB)为基体,纳米二氧化硅(SiO_2)为固化剂,制备了ITPB型聚氨酯/纳米SiO_2弹性体。阐述了ITPB/SiO_2弹性体的制备机理,研究了溶剂的种类、SiO_2加入量和固化条件对ITPB/SiO_2弹性体力学性能的影响。结果表明,以环己酮为溶剂制备的ITPB/SiO_2弹性体力学性能最佳;随着SiO_2加入量的增加,弹性体的拉伸强度、断裂伸长率、断裂强度及硬度均有明显提高,SiO_2加入量为6%时,弹性体的断裂伸长率达到最大值220.14%,当SiO_2加入量为8%时,弹性体的拉伸强度达到最大值7.11 MPa;提高固化温度和延长固化时间,有助于提高ITPB/SiO_2弹性体的力学性能。  相似文献   

17.
以4,4'-二氨基二苯醚(ODA)、3,3',4,4'-二苯甲酮四羧酸二酐(BTDA)为单体,以苯基异氰酸酯改性氧化石墨烯(pGO)为填料,通过原位聚合法成功制备了改性氧化石墨烯/聚酰亚胺复合薄膜。采用红外光谱对其结构进行了表征,并研究其拉伸性能和热稳定性能。结果表明,当填料含量为1%时复合薄膜的拉伸性能最佳,拉伸强度(T_S)达到69.1MPa,拉伸模量(T_M)达到2.31GPa,相对于纯PI薄膜其拉伸强度提高9.3%,拉伸模量提高19.1%;此时复合薄膜的残炭率(Y_c)为60.1%,比纯PI薄膜提高2.7%,最大分解速率时的温度(T_(max))为587℃,比纯PI薄膜提高约8℃,玻璃化转变温度(T_g)为361℃,说明该复合薄膜的拉伸性能和热稳定性能得到一定程度的提高。  相似文献   

18.
以N,N-二甲基乙酰胺为溶剂,用芳香族二胺4,4′-二氨基二苯醚(ODA)与不同比例的2个芳香族二酐4,4′-联苯四甲酸二酐(BPDA)、双酚A型二醚二酐(BPADA)制备三元共聚无氟芳香族透明聚酰亚胺(PI)薄膜。用傅里叶变换红外光谱仪(FTIR)表征PI结构,用差示扫描量热仪(DSC)、热重分析仪(TG)、阻抗分析仪、紫外-可见分光光度仪(UV-VIS)研究PI薄膜的热性能、介电性能和透光率。结果表明:三元共聚PI薄膜玻璃化转变温度高于210.0℃;热失重5%的温度高于480.0℃;在可见光范围内透明性良好,PI薄膜在465 nm处透光率均超过80.0%,最高可达85.5%;相对介电常数为1.728 1~2.987 2,介电损耗为0.002 9~0.014 3。  相似文献   

19.
用2,2-双[4-(4-氨基苯氧基)苯基]丙烷(BAPP)和4,4′-二氨基二苯甲烷(MDA)作为二胺,3,3,′4,4′-二苯醚四羧酸二酐(ODPA)作为二酐,以N,N-二甲基甲酰胺(DMF)为溶剂,通过常规的两步法,分别经热亚胺化和化学亚胺化过程合成了可溶性共聚聚酰亚胺。用FT-IR对聚合物的结构进行了表征,FT-IR测试结果表明在1 780 cm-1、1 720 cm-1和725 cm-1左右出现了聚酰亚胺的特征吸收峰。采用溶解性测试、DSC、TGA、拉伸测试和吸水率测试对产物的性能进行了测试。共聚聚酰亚胺在常见有机溶剂中可溶,并且有很好的热稳定性,在氮气氛中,起始降解温度超过500℃,800℃质量保持率为58.2%。共聚聚酰亚胺膜的拉伸强度、拉伸模量、断裂伸长率分别为103.5 MPa,2.36 GPa和11.7%。同时共聚聚酰亚胺膜还有很低的吸水率,为0.87%。  相似文献   

20.
改变2-(4-氨基苯基)-5-氨基苯并咪唑(APABI)和4,4′-二氨基二苯醚(ODA)的比例,将其与3,3′,4,4′-四羧基联苯二酐(BPDA)三元共聚,制备出一系列不同苯并咪唑含量的聚酰亚胺薄膜。对其力学,电学和光学性能、吸水率、表面能及接触角等进行了测试。结果表明,制备的聚酰亚胺薄膜可见光最大透过率可达84.7%,透光性良好。薄膜的最大拉伸强度达130.9 MPa,力学性能优异。薄膜的吸水率为1%左右,表面能43~45 mJ/m2,远小于水的表面能72.8 mJ/m2,具有较强的疏水性。此外该薄膜还具有优异的介电性能,可应用于电子电器、航天航空等领域。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号