首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 4 毫秒
1.
采用石墨烯/聚苯胺(rGO/PANI)复合物制备超级电容器,以弥补二者各自的不足。改进了Hummers法制备氧化石墨烯(GO)。采用原位聚合法制备出PANI,最后利用水热法制备出rGO/PANI复合物。得到的复合材料的比电容最高值达198 F·g~(-1),明显比rGO的比电容(52 F·g~(-1))值高。此外,循环1 000圈后,复合材料的电容量衰减5%。  相似文献   

2.
采用脉冲电沉积一步合成得到石墨烯/聚苯胺(PANI)复合材料,通过SEM和XRD对材料的形貌和结构进行了表征,复合材料中聚苯胺为翠绿亚胺态,呈纤维状形貌。将所得石墨烯/PANI复合材料用作超级电容器电极进行电化学性能测试,比纯聚苯胺表现出更优异的超电容性能。电流密度为0.5A·g~(-1)时,石墨烯/PANI的比容量可达703F·g~(-1),且具有良好的倍率性能。  相似文献   

3.
钱东 《精细化工》2011,28(5):442-446,504
在酸性条件下采用液相共沉淀法合成球状和海胆状的α-MnO2,并以α-MnO2为氧化剂,H2SO4溶液为介质,引发苯胺聚合制备得到不同质量比的聚苯胺(PANI)/α-MnO2复合物。采用XRD、FTIR、SEM等法对材料的形貌和物相进行表征,同时采用循环伏安、计时电位法考察了PANI/α-MnO2复合物在1 mol/L Na2SO4水系电解液中的电化学性能。结果表明,起始原料m(苯胺)∶m(α-MnO2)=1∶3制备的PANI/α-MnO2复合物,在制备电极过程中其质量未到α-MnO2质量一半的条件下,PANI/α-MnO2复合物的比电容达到64.58 F/g,是所合成的α-MnO2比电容(43.49 F/g)的1.48倍,且经过600次循环,其比电容保持率在85%以上,而α-MnO2只有57%的比电容保持率。  相似文献   

4.
在酸性条件下采用液相共沉淀法合成球状和海胆状的α-MnO2,并以α-MnO2为氧化剂,H2SO4溶液为介质,引发苯胺聚合制备得到不同质量比的聚苯胺(PANI)/α-MnO2复合物。采用XRD、FTIR、SEM等法对材料的形貌和物相进行表征,同时采用循环伏安、计时电位法考察了PANI/α-MnO2复合物在1 mol/L Na2SO4水系电解液中的电化学性能。结果表明,起始原料m(苯胺)∶m(α-MnO2)=1∶3制备的PANI/α-MnO2复合物,在制备电极过程中其质量未到α-MnO2质量一半的条件下,PANI/α-MnO2复合物的比电容达到64.58 F/g,是所合成的α-MnO2比电容(43.49 F/g)的1.48倍,且经过600次循环,其比电容保持率在85%以上,而α-MnO2只有57%的比电容保持率。  相似文献   

5.
本研究以MAXene(Ti_3AlC_2)刻蚀和剥离得到的MXene(Ti_3C_2)为基底,在酸性条件下将苯胺单体负载到MXene上制备MXene/PANI复合材料。利用场发射扫描电镜(SEM)、X射线衍射(XRD)对材料进行表征,在1 M H_2SO_4电解液中,对合成的复合材料进行电化学性能测试。结果表明,该种方法可成功制备MXene/PANI复合材料,在电流密度为0.5 A·g~(-1)时,复合材料比电容达到256.6 F·g~(-1),优异的电化学性能使得该材料可作为一种理想的超级电容器电极材料。  相似文献   

6.
采用水热合成和200℃、300℃和400℃热出的方法,成功的制备δ-MnO_2复合多壁碳纳米管和α-MnO_2复合多壁碳纳米管超级电容器电极材料。运用XRD,SEM,TEM对实验制备的复合材料结构和形貌的分析。实验结果表明δ-MnO_2复合多壁碳纳米管和α-MnO_2复合多壁碳纳米管材料电极表现出非常理想的比电容,在扫描速度为10m v-1和电解液为1mol·L~(-1)Na_2SO_4,比电容分别为82F g~(-1)和102.5F g~(-1)。充放电循环1000次,δ-MnO_2复合多壁碳纳米管比容量电极能够保持在86.3%和α-MnO_2复合多壁碳纳米管电极保持在66.1%。δ-MnO_2复合多壁碳纳米管和α-MnO_2复合多壁碳纳米管材料具有优异的电化学性能,是一种很有前景的超级电容器电极材料。  相似文献   

7.
采用螯合法制备了RGO/δ-MnO_2复合材料,并用X射线粉末衍射(XRD)、低压氮气吸附脱附(BET)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、能谱(EDS)、热重(TGA)对其结构和物相进行表征。采用循环伏安测试(CV)、恒电流充放电(GCD)以及循环测试对所制材料电化学储能进行测试。结果表明RGO/δ-MnO_2复合材料比纯石墨烯和纯δ-MnO_2具有更优异的电化学性能。当电流密度为1 A·g-1时,RGO/δ-MnO_2复合材料的比电容可达322.6 F·g-1,比纯δ-MnO_2电极材料高234.2 F·g-1,比纯石墨烯高212.1F·g-1。当电流密度放大10倍后,RGO/δ-MnO_2复合材料的比电容保留率为79.1%。在1000次恒流充放电测试后,比电容为252 F·g-1(99.6%),说明该方法制备的RGO/δ-MnO_2复合材料是一种有应用前景的超级电容器电极材料。  相似文献   

8.
采用改进的Hummers法制备氧化石墨,将制备好的MnO_2微球均匀分散在氧化石墨烯分散液中,水热反应自组装制备MnO_2微球/石墨烯气凝胶复合材料(MnO_2/GA),对其物相、形貌、比表面积进行表征,并测试了其电化学性能。结果表明,MnO_2微球嵌入包覆在了石墨烯片层中,电流密度0.5 A·g~(-1)下,MnO_2/GA的比电容为175.5 F·g~(-1)高于MnO_2的比电容(78.4 F·g~(-1)),且经过1 000次循环,MnO_2/GA具有更稳定的循环性能。  相似文献   

9.
《广州化工》2021,49(7)
采用水热法和煅烧法相结合制备得到直接生长在泡沫镍上的网格状NiFe_2O_4纳米片阵列。采用X射线晶体衍射仪、扫描电子显微镜、透射电子显微镜等表征手段对其组成和结构进行表征并作为超级电容器电极进行测试。电化学性能测试结果表明,制得的NiFe_2O_4纳米片阵列结构电极具有较高的比电容和优异的电学性能。在电流密度为1 A·g~(-1)时,比电容量高达到722.05 F·g~(-1)。在电流密度为10 A·g~(-1)时,比电容为464.73 F·g~(-1),比电容量仍保持在1 A·g~(-1)时比电容量的64.36%。  相似文献   

10.
神华烟煤活化制备电化学电容器电极材料的研究   总被引:1,自引:0,他引:1  
以神华烟煤为前驱体,KOH为活化剂制备高比表面积活性炭。采用N_2吸附法对活性炭的比表面积、孔容和孔结构进行了表征,并评价了其用作超级电容器电极材料的电化学特性。在碱炭比为4:1,800℃活化1 h的条件下制备的活性炭比表面积达3 134.28 m~2·g~(-1),总孔容1.96 cm~3·g~(-1),中孔率87.94%。该活性炭在3 mol/L KOH水溶液及1 mol/L(C_2H_5)_4NBF_4/碳酸丙烯酯(Propylene carbonate PC)电解液中均具有高的比电容(分别为281 F·g~(-1),155 F·g~(-1))和低的等效串联内阻。  相似文献   

11.
本文研究制备一种CoNiO_2/碳纳米复合材料的方法。采用X-射线粉末衍射仪(XRD)和场发射电子显微镜(FESEM)表征产物的相结构与形貌,结果表明获得了CoNiO_2/碳纳米复合材料。复合材料的电化学性能采用循环伏安法(CV)和单电极充放电测试。将复合材料、活性炭(AC)和PVA-KOH电解质膜组装成不对称超级电容器,电性能测试结果表明在充放电电流密度为12 mA·cm~(-2)下其比电容最高达670 F·g~(-1)并稳定保持2000个循环;经过16000次循环后,其比电容仍有482.79 F·g~(-1),显示出高的比电容和长的循环稳定性。  相似文献   

12.
采用原位聚合法制备不同摩尔比的PANI/MoS_2纳米复合材料。通过X射线衍射、红外光谱、透射电镜等手段,对所制备的材料进行了结构和微观形貌的表征,结果表明:所制备的聚苯胺呈现棒状纳米纤维包覆在卷曲的纳米鳞片MoS_2片层上形成了PANI/MoS_2纳米复合材料。通过循环伏安法、恒流充放电等测试手段对材料的电化学性能进行了研究,结果表明:在不同电流密度下PANI∶MoS_2=1∶0.1的二元复合物比电容明显高于纯聚苯胺,在1 A/g时PANI∶MoS_2=1∶0.1的二元复合物的比电容值可达942.5 F/g,相比于同电流密度下的PANI的400.5 F/g的高出一倍。表明适量的MoS_2的掺入有助于提高PANI电极材料的电化学电容特性。  相似文献   

13.
以太西无烟煤为原料,采用催化热处理、改良Hummers氧化等方法,制备煤基氧化石墨烯(CGO),进而以CGO和聚苯胺(PANI)为前驱体,采用水热自组装法,制备得到PANI/石墨烯宏观体复合材料(3D-PCG)。采用FT-IR、XRD、Raman、SEM和TEM等技术,研究了材料的组成、结构和形貌,考察了3D-PCG的电化学性能。结果表明,PANI以纳米棒状形态均匀镶嵌在煤基石墨烯宏观体(3D-CG)的网状结构中;当PANI与CGO质量比为1:2时,3D-PCG的电化学性能优于PANI和3D-CG,其比电容可达663 F·g~(-1)。  相似文献   

14.
以土豆为碳源,乙二胺为氮源,氢氧化钾为活化剂制备具有微孔结构高比表面积氮掺杂活性炭。通过N_2物理吸附、扫描电镜、透射电镜、拉曼光谱和元素分析研究活性炭比表面积、孔结构、形貌及元素组成,并测试其电化学性能。结果表明,当碱碳质量比为5∶1时(NC600-800-5),活性炭材料比表面积最高2 440 m~2·g~(-1)、孔容最大1.07 cm~3·g~(-1)、孔径最大0.82 nm和1.80 nm。电流密度1 A·g~(-1)时比电容可达370 F·g~(-1),经3 000次循环充放电后,比电容保持率为95.2%。  相似文献   

15.
采用水热法,通过控制反应时间制备出不同形貌和尺寸的Co_3O_4材料。利用XRD和SEM对其结构和形貌进行表征,采用循环伏安、恒电流充放电和交流阻抗等方法测试了其电化学性能。结果表明,随着反应时间的延长, Co_3O_4材料的晶粒尺寸增大,形貌由不规则颗粒状变为正立方体,其比电容不断降低。在电流密度为0.2 A·g~(-1)时,反应5 h、 10 h和15 h所制备的Co_3O_4材料的比电容值分别为153.3 F·g~(-1)、 99.3F·g~(-1)和51.1 F·g~(-1)。当电流密度从0.2 A·g~(-1)增大到1.8 A·g~(-1)时,反应5 h、 10 h和15 h所制备的Co_3O_4材料的比电容值分别为96.3 F·g~(-1)、 91.3 F·g~(-1)和27.1 F·g~(-1),其比电容保持率分别为62.8%、 91.9%和53.0%。水热反应5 h所制备的Co_3O_4材料具有最好的比电容。  相似文献   

16.
以废旧手机锂电池为前驱体,回收负极石墨粉,并以其原料采用氧化还原法制备了石墨烯。通过FT-IR、XRD对其进行了表征和利用交流阻抗、恒电流充放电等电化学测试方法对其电化学性能进行了测试。结果表明:该石墨烯表现出与文献相近的电化学性能,在电流密度0.5A·g~(-1)下,石墨烯电极材料比电容量为113.2F·g~(-1),经1000次循环后比电容可保持93.2%。  相似文献   

17.
以海藻酸钠(SA)为软模板,采用原位氧化聚合法制备了聚苯胺/海藻酸钠(PANI/SA)电极材料,研究了SA的浓度对其结构、形貌及电化学性能的影响。利用傅里叶变换红外光谱(FTIR)和扫描电镜(SEM)对所制PANI/SA的结构和形貌进行了表征。在1 mol/L H2SO4溶液中,通过循环伏安法(CV)、恒电流充放电(CD)和交流阻抗法(EIS)测试了电极材料的电化学性能。结果表明:PANI/SA的比电容随聚合体系中SA质量分数的增大先升高后降低,w(SA)=0.01%时,PANI/SA为由纳米纤维相互交织缠绕的网状结构,其比电容最高(459.7F/g),较纯PANI提高了20.8%。  相似文献   

18.
针对SnO_2作为锂离子电池负极材料循环性能和导电性差的问题,采用水热法制备了SnO_2/C复合物。研究了多级结构SnO_2的制备工艺并以此为基础制备了SnO_2/C复合物,通过XRD、SEM、TEM等分析方法表征了材料的结构、组成和形貌;采用循环伏安、恒流充放电等电化学方法表征SnO_2和SnO_2/C复合材料的电化学性能。实验结果表明,在200 mA·g~(-1)恒电流密度充放电时,SnO_2/C复合物电极充放电循环50次后比容量为346.1 mAh·g~(-1),远高于SnO_2电极;与此同时,无定形碳的引入使SnO_2/C复合物电极的倍率性能也显著提高。  相似文献   

19.
《辽宁化工》2021,50(1)
超级电容器(SCs)以其功率密度高、寿命长、生态友好、成本低等显著特点受到研究者的广泛关注。然而,能量密度仍然较低,限制了其进一步的应用。因此,选择具有高比电容的电极材料是提高超级电容器电化学性能的重要方法之一。采用简易的一步水热法成功地制备出过渡金属碳酸氢盐Ni(HCO_3)_2电极材料。经实验证明,该材料具有良好的电化学性能,在电流密度为1A·g~(-1)时具有较高的比电容2056F·g~(-1),且当用10A·g~(-1)的电流密度进行测试时比电容仍有1292F·g~(-1),说明Ni(HCO_3)_2材料具有良好的倍率性能。此外,在5 A·g~(-1)电流密度下循环2 000圈后仍然具有93%的比容量保持率,具有良好的循环稳定性。  相似文献   

20.
通过简便的两步水热法,在碳布(CC)上直接合成了一种新型的CC/MnO_2/LiMn_2O_4复合材料,并将其用于超级电容器电化学性能研究,结果表明,在0.5 A·g~(-1)的电流密度下,CC/MnO_2/LiMn_2O_4复合材料的比容量达292.91 F·g~(-1),大于CC/MnO_2的比电容(233.52 F·g~(-1)),LiMn_2O_4和MnO_2发挥协同效应提高了超级电容器的电化学性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号