首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
6 mm thick ZK60 and ZK60-Y alloy plates were successfully friction stir welded (FSW) at a tool rotation rate of 1200 r/min and a traverse speed of 100 mm/min.FSW resulted in the dissolution of MgZn2 particles in the ZK60 and the breakup and dispersion of W-phase (Mg3Zn3Y2) particles in the ZK60-Y alloy, thereby leading to a decrease in the hardness of the nugget zone (NZ) for the ZK60 alloy and an increase in the hardness of the NZ for the ZK60-Y alloy, respectively.While two FSW joints exhibited similar joint efficiency (87%-89% of ultimate tensile strengths of the parent materials), the yield strength of the FSW ZK60-Y joint was substantially higher than that of the FSW ZK60 joint.The fracture occurred in the NZ and the heat affected zone for the ZK60 and ZK60-Y joints, respectively, which were consistent with the lowest hardness distribution of the welded joints.  相似文献   

2.
The effect of friction stir welding (FSW) parameters on the microstructure and mechanical properties of 5.6 mm thick 2219Al-T6 joints was investigated in detail. While the sound FSW joints could be obtained under lower rotation rates of 400–800 rpm and welding speeds of 100–800 mm/min; higher rotation rates of 1200–1600 rpm easily led to the tunnel and void defects. The FSW thermal cycle resulted in low hardness zones (LHZs) on both retreating side (RS) and advancing side (AS). The LHZs may be located at the interface between the nugget zone (NZ) and the thermo-mechanically affected zone (TMAZ), at the TMAZ, or at the heat affected zone under the varied welding parameters. The tensile strength of FSW 2219Al-T6 joints increased when increasing the welding speed from 100 to 800 mm/min, and was weakly dependent on the rotation rates from 400 to 1200 rpm. The FSW 2219Al-T6 joints fractured along the LHZ on the RS.  相似文献   

3.
6005A-T6铝合金搅拌摩擦焊接头组织与力学性能特征   总被引:1,自引:0,他引:1  
采用光学显微镜、扫描电子显微镜、透射电子显微镜、拉伸实验机和显微硬度计对6005A铝合金搅拌摩擦焊接头的微观组织及力学性能进行了研究。结果表明:焊核区为细小的等轴晶,几乎所有粒子溶于基体;热机械影响区呈现为被拉长的畸变晶粒,且存在大量的位错;热影响区的组织明显粗化,处于过时效状态。与母材相比,搅拌摩擦焊接头的强度及伸长率均有下降趋势,且接头出现软化,最小硬度值出现在前进侧的热影响区内。搅拌头旋转速率为1200r/min、焊接速率为200mm/min时可获得优质接头,抗拉强度达到母材强度的72%,伸长率达到母材的69%。  相似文献   

4.
Microstructure and mechanical properties of friction stir welded copper   总被引:1,自引:0,他引:1  
The main objective of this investigation was to apply friction stir welding technique (FSW) for joining of 2 mm thick copper sheet. The defect free weld was obtained at a tool rotational and travel speed of 1,000 rpm and 30 mm/min, respectively. Mechanical and microstructural analysis has been performed to evaluate the characteristics of friction stir welded copper. The microstructure of the weld nugget (WN) consists of fine equiaxed grains. Similarly, the elongated grains in the thermomechanically affected zone (TMAZ) and coarse grains in the heat-affected zone (HAZ) were observed. The hardness values in the WN were higher than the base material. Eventually HAZ shows lowest hardness values because of few coarse grains presence. Friction stir welded copper joints passes 85% weld efficiency as compared to the parent metal.  相似文献   

5.
采用8.5 mm厚度2A14-T4铝合金和自主研制搅拌工具进行静止轴肩搅拌摩擦焊(stationary shoulder friction stir welding,SSFSW)实验,探讨焊接工艺参数对接头组织和力学性能的影响规律。结果表明:只有在低转速工艺参数范围内(转速ω=400~600 r/min与焊接速率v=60~120 mm/min)可获得焊缝表面光滑、无缺陷厚板铝合金SSFSW焊接接头。SSFSW焊缝区主要由焊核区(NZ)组成,周围热力影响区(TMAZ)及热影响区(HAZ)宽度明显减小,焊核区与搅拌针形状类似且由两种不同尺寸细小等轴晶构成,前进侧NZ晶粒比后退侧NZ更为细小。接头显微硬度呈"W"状分布,NZ硬度值可达到母材硬度80%~90%,TMAZ与HAZ交界处存在软化区,硬度最低为母材硬度72%左右。在给定ω=500 r/min,v=140 mm/min焊接参数下,SSFSW接头抗拉强度可达到母材的88%,断裂位置多位于后退侧TMAZ与HAZ交界处软化区,具有韧性断裂特征。  相似文献   

6.
对厚度为3.5mm的7046铝合金挤压板材进行搅拌摩擦焊接并对焊接接头进行人工时效,研究了焊后时效对接头力学性能的影响.结果 表明,焊接接头时效前的硬度分布大致呈"W"形,抗拉强度为406.5 MPa,焊接系数为0.8,拉伸时在后退侧热影响区与热机影响区的过渡位置出现断裂,此处的硬度值最低,断裂面上有大量的韧窝;进行1...  相似文献   

7.
对一种Mg-Gd-Y-Zr合金cast-T6状态板片试样搅拌摩擦焊接后的组织与性能进行了研究。结果表明:Mg-Gd-Y-Zr合金的搅拌摩擦焊的焊核区发生动态再结晶,为等轴细晶,硬度值最高;热机影响区基体组织具有热变形特征,第二相会粗化、溶解,硬度值稍低;热影响区晶粒尺寸与母材相当,第二相粗化,硬度值低于母材。在本工作实验条件下,cast-T6铸件试样的焊接系数达0.91,且伸长率相对于母材有大幅度提高。断口形貌SEM分析显示,接头断裂模式为韧性断裂。  相似文献   

8.
A 6 mm-thick SiCp/2009AI composite plate was successfully joined by friction stir welding(FSW) using an ultrahard material tool to investigate the evolution of the microstructure and the strength in the nugget zone(NZ).While some SiC particles were broken up during FSW,most of them rotated in the matrix.Large compound particles on the interfaces were broken off during FSW,whereas the amorphous layer and small compound particles remained on the interfaces.The dynamically recrystallized Al grains nucleated on the surface of fractured SiC particles during FSW,forming nano-sized grains around the SiC particles.The yield strength of the NZ decreased slightly due to the variation in the size,shape,and distribution of the SiC particles.The clean interfaces were beneficial to the load transfer between SiC particles and Al matrix and then increased the ultimate tensile strength of the NZ.  相似文献   

9.
Stationary shoulder friction stir welding (SSFSW) butt welded joints were fabricated successfully for AA6061-T6 sheets with 5.0 mm thickness. The welding experiments were performed using 750–1500 rpm tool rotation speeds and 100–300 mm/min welding speeds. The effects of welding parameters on microstructure and mechanical properties for the obtained welds were discussed and analyzed in detail. It is verified that the defect-free SSFSW welds with fine and smooth surface were obtained for all the selected welding parameters, and the weld transverse sections are obviously different from that of conventional FSW joint. The SSFSW nugget zone (NZ) has “bowl-like” shapes with fairly narrow thermal mechanically affected zone (TMAZ) and heat affected zone (HAZ) and the microstructures of weld region are rather symmetrical and homogeneous. The 750–1500 rpm rotation speeds apparently increase the widths of NZ, TMAZ and HAZ, while the influences of 100–300 mm/min welding speeds on their widths are weak. The softening regions with the average hardness equivalent 60% of the base metal are produced on both advancing side and retreating side. The tensile properties of AA6061-T6 SSFSW joints are almost unaffected by the 750–1500 rpm rotation speeds for given 100 mm/min, while the changing of welding speed from 100–300 mm/min for given 1500 rpm obviously increased the tensile strength of the joint and the maximum value for welding parameter 1500 rpm and 300 mm/min reached 77.3% of the base metal strength. The tensile fracture sites always locate in HAZ either on the advancing side or retreating side of the joints.  相似文献   

10.
对7A04-T6铝合金板进行水下搅拌摩擦焊接(FSW),研究转速对水下FSW接头组织和力学性能的影响。结果表明:水下FSW接头的硬度最小值均位于热机械影响区。高转速条件下(950r/min)接头的硬度分布呈现"W"形,焊核区平均硬度值高于低转速条件下(475,600,750r/min)接头的硬度值。当焊速恒定为235mm/min,转速从475r/min提高到750r/min时,接头焊核区的析出相随转速的增大逐渐粗化,接头抗拉强度系数从89.71%降低到82.33%;当转速升高到950r/min时,析出相发生固溶时效,呈现细小弥散的分布特征,接头的强度系数提高到89.04%。接头具有较高的应变硬化能力,塑性伸长率较高。水下FSW接头的拉伸断口均呈现微孔聚合和解理混合断裂特征。  相似文献   

11.
A 2219-T6 aluminum alloy was friction stir welded in the present study. The results indicate that the recrystallized grains in the weld nugget zone (WNZ) of the joints exhibit the largest size in the middle part and the smallest size in the lower part. Furthermore, the void defect is formed in the joint when the rotation speed or welding speed is quite high. As the rotation speed or welding speed increases, the tensile strength of the joint firstly increases to a maximum value and then sharply decreases due to the occurrence of void defect. During tensile test, the defect-free joints welded at lower rotation speed are fractured in the WNZ, while those welded at relatively high rotation speed tend to be fractured in the heat affected zone (HAZ) adjacent to the thermal mechanically affected zone (TMAZ) on the retreating side.  相似文献   

12.
2A12铝合金筋板件T型搅拌摩擦焊工艺及焊后热处理   总被引:3,自引:2,他引:1  
为评价2A12铝合金筋板件搅拌摩擦焊工艺并探寻提高接头强度的途径,进行了2A12铝合金筋板件的T型搅拌摩擦焊焊接工艺试验,并对不同人工时效热处理下焊接接头的微观组织及性能进行了研究.研究表明:采用T型搅拌摩擦焊即可实现2A12铝合金筋板件的成形,当搅拌头旋转速度为750 r/min、焊接速度60mm/min时,接头的抗...  相似文献   

13.
In the present work, 80 mm thick 6082Al alloy plates were successfully double-side welded by friction stir welding(FSW). The relationship between the microstructures and mechanical properties was built for the double-side FSW butt joint with more attention paid to the local characteristic zones. It was shown that a phenomenon of microstructural inhomogeneity existed in the nugget zone(NZ) through the thickness direction. The grain size presented an obvious gradient distribution from the top to the bottom for each single-pass weld, and the microhardness values decreased from both surfaces to the middle of the NZ.The lowest hardness zone(LHZ) exhibited a "hyperbolical"-shaped distribution extending to the middle of the NZ. Similar tensile properties were obtained in the three sliced specimens of the FSW joint, and the joint coefficient reached about 70% which achieved the same level as the conventional FSW Al alloy joints. Finite element modeling proved that the "hyperbolical"-shaped heat affected zone(HAZ) was beneficial to resisting the strain concentration in the middle layer specimen which helped to increase the tensile strength. Based on the analysis of the hardness contour map, tensile property and microstructural evolution of the joints, an Isothermal Softening Layer(ISL) model was proposed and established, which may have a helpful guidance for the optimization on the FSW of ultra-thick Al alloy plates.  相似文献   

14.
This paper aims to demonstrate the successful friction stir welding (FSW) conditions of AM20 magnesium alloy. The maximum yield strength and ultimate tensile strength of weld were found to be 75% and 65% of the base metal strength, respectively. The maximum bending angle of the welded joint was 45°. Observations revealed that less plunging depth, high shoulder diameter, and low tool rotational speed and welding speed give better tensile properties. Maximum temperature was observed at 1?mm away from the tool shoulder toward the advancing side. Micro-hardness variation is found to be decreasing along the depth of the weld, and nugget zone (NZ) gives the higher hardness values when compared with base material (BM) and other welded zones. Needle-like grains of the BM became equiaxed grains due to grain recrystalized by the FSW process. The grains in the NZ were finer than thermo-mechanically affected zone and almost same size of grains observed at bottom, middle, and top of the NZ.  相似文献   

15.
张忠科  张剑飞  于洋  王希靖 《材料导报》2018,32(22):3936-3940
采用搅拌摩擦焊对厚度为30 mm的2A12铝合金板材进行对焊连接,分析了接头不同厚度处的微观组织与冲击性能。结果表明:随着热输入量的减少,接头上层的晶粒相比于下层出现了粗化现象,导致接头上层区域的冲击韧性低于下层。焊核区晶粒最为细小,热机影响区次之,热影响区晶粒最为粗大;焊核区的冲击韧性高于热影响区,热机影响区由于存在微型裂纹,所以冲击韧性最低。焊核区上层的晶粒尺寸小于热机影响区下层的晶粒尺寸,但焊核区上层的冲击韧性低于热机影响区下层的冲击韧性,这是由于焊核区所含的Al2CuMg脆性第二相的数量较多。焊接接头冲击韧性的变化不仅与焊缝不同区域的微观组织变化有关,还与该区域的第二相数量有关。  相似文献   

16.
The AA6005A-T6 aluminum hollow extrusions were friction stir welded at a high welding speed of 2000 mm/min and various axial forces. The results show that the nugget zone (NZ) is characterized by fine equiaxed grains, in which a low density of equilibrium phase β is observed. The grains in the thermo-mechanically affected zone (TMAZ) are elongated, and the highest density of dislocations and a low density of β' precipitates can be found in grains. The heat affected zone (HAZ) only experiences a low thermal cycle, and a high density of β” precipitates and a low density of β' precipitates remain in the coarsened grains. The microhardness evolutions in the NZ, TMAZ and HAZ are governed by the grain refinement and dislocation strengthening, the dislocation and precipitation strengthening, and the precipitation and solid solution strengthening, respectively. When increasing the axial force, the changing trend of one strengthening mechanism is contrary to the other in each zone, and the microhardness increases in different zones. As a result, the tensile strength roughly increases with raising the axial force, and all joints show good tensile properties as the high welding speed inhibits the coarsening and dissolution of strengthening precipitates significantly.  相似文献   

17.
采用自行研制的便携式搅拌摩擦焊设备,对厚度为3mm的7A52铝合金薄板进行焊接试验。用金相显微镜、扫描电镜等分析测试手段,分析了焊缝的微观组织结构。焊缝可分为焊核、热机影响区、热影响区等三个区域。焊核为细小均匀的等轴晶,晶粒明显细小;热机影响区出现了晶粒粗化现象,由母材的细纤维组织变为具有弧度的弯曲粗纤维组织;热影响区组织发生了回复、再结晶和粗化。  相似文献   

18.
The microstructure evolutions of severely deformed aluminum sheets by Constrained Groove Pressing (CGP) after Friction Stir Welding (FSW) are investigated. To do so, the specimens are deformed in three different strains using CGP process which make different the initial microstructures. Then, the specimens are joined at various revolution pitches (traveling speed/rotation speed ratio) of 0.20, 0.25 and 0.33 mm/r. To understand the effect of initial strains on the properties of joints, the microhardness measurements and microstructure investigations of different areas from retreating to advancing sides of the joints are carried out. The results achieved from FSW of CGPed samples are compared with those achieved from FSW of as-annealed ones (0 pass). It is found that in contrast to 2 passes CGPed specimens, for specimens strained by 1 pass of CGP process after FSW at low revolution pitch, the grain size at the center of stir zone is finer than that at around of stir zone center. Also, it is revealed that for CGPed samples in contrast to as-annealed ones, some recrystallized grains are formed in HAZ. Moreover, the amount of recrystallized grains in HAZ is different at advancing and retreating sides.  相似文献   

19.
This paper presents the results of experimental investigation on fatigue behaviors of friction stir welded joints in AA7075-T6 with ultrasonic fatigue test system (20 kHz). Two kinds of particles, Fe-rich intermetallic compounds and Mg2Si-based particles, governed the fatigue crack initiation. The plastic deformation and recrystallization during welding process led to the changes in particle size and micro crack occurrence between thermo-mechanically affected zone (TMAZ) and nugget zone (NZ). Therefore, the fatigue crack initiation sites leaned to be located at the TMAZ in short fatigue life, or at the NZ in very high cycle fatigue regime.  相似文献   

20.
对6 mm厚的6082-T6铝合金进行两种表面处理然后实施搅拌摩擦焊接,研究了对接面氧化膜对接头组织和疲劳性能的影响。结果表明,进行速度为1000 mm/min的高速焊接时,对接面未打磨和打磨的接头焊接质量都良好,接头强度系数达到81%;两种接头的疲劳性能基本相同,疲劳强度均为100 MPa;少数样品在焊核区外断裂,大部分样品在热影响区断裂。与接头相比,两种接头焊核区的疲劳性能有所提高,均为110 MPa,在疲劳测试中裂纹并未沿“S”线萌生和扩展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号