首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
目的:基于β-环糊精制备栀子蓝色素包合物,评价其光稳定性效果。方法:采用超声辅助饱和水溶液法制备栀子蓝色素β-环糊精包合物,通过红外光谱及扫描电镜对其进行定性表征,利用单因素逐级试验及正交优化确定包合物形成的最佳工艺条件,考察包合物在不同光照条件下的稳定性。结果:红外光谱及扫描电镜结果显示,包合后得到的物质不是栀子蓝色素和β-环糊精的简单混合,而是栀子蓝色素和β-环糊精形成的新固相包合体;包合的最佳工艺条件:色素添加量2 g,加热温度50℃,搅拌时间3.5 h,超声处理1 h;栀子蓝色素β-环糊精包合物在灯光照射、日光照射及紫外照射3种条件下的光稳定性明显高于未包合色素。结论:通过β-环糊精包合色素可显著提高栀子蓝色素的光稳定性。  相似文献   

2.
以收率和包合率为指标,采用饱和水溶液法制备核桃油-β-环糊精包合物,通过单因素和正交试验确定优化工艺条件,并考察产品氧化稳定性和水溶性。结果表明:最佳制备工艺条件为核桃油与β-环糊精质量比1:4、包合时间4.5h、包合温度65℃,此条件下包合率达81.6%、收率达61.6%;经紫外分光光度法检测,核桃油-β-环糊精已形成包合物,核桃油-β-环糊精包合物可明显提高核桃油的氧化稳定性和水溶性。  相似文献   

3.
通过Box-Benhnken响应面方法优化栀子黄色素与β环糊精包合物的制备工艺,确定最佳包合条件为:饱和β-环糊精溶液10 m L,栀子黄色素335 mg,温度50.0℃,搅拌时间1.0 h。在此条件下包合率为68.44%。采用红外光谱及扫描电镜对栀子黄色素和β-环糊精及其包合物的结构进行分析,结果表明:包合物的结构与主客体的结构明显不同,包合后形成新的固体相。在黑暗、室外曝光、室内光照及不同的p H值条件下,比较栀子黄色素-β-环糊精包合物及未被包合栀子黄色素的稳定性,结果包合物的光稳定性高于未被包合的栀子黄色素的稳定性。两者具有相近的酸碱稳定性,并且碱性条件下的稳定性远高于酸性条件下的稳定性。  相似文献   

4.
研究野坝子挥发油β-环糊精包合物的最佳制备工艺。采用饱和水溶液法制备野坝子挥发油β-环糊精包合物。以包合物的收率和包合物含油率为评价指标,采用正交设计法优选野坝子挥发油β-环糊精包合物的制备工艺条件,并使用薄层色谱法和紫外分光光度法对包合效果进行评价。结果表明,正交实验得到的最佳工艺条件:挥发油与β-环糊精的配比为1∶6 mL/g、包合温度为60℃、包合时间1.5 h,在此工艺条件下,β-环糊精包合物的收率和含油率均较高,可以推广应用。  相似文献   

5.
《粮食与油脂》2017,(11):30-33
采用饱和水溶液法制备苦荞黄酮β-环糊精包合物,对包合物的结构进行了透射电镜(SEM)、热重分析(TG)、X射线衍射分析(XRD)的表征。通过优化工艺条件,得出制备包合物的最佳工艺条件为苦荞黄酮与β-环糊精质量比6∶1、包合温度70℃、包合时间4 h。并进一步检测了苦荞黄酮β-环糊精的抗氧化性和稳定性。  相似文献   

6.
β-胡萝卜素-β-环糊精包合物制备工艺的优化   总被引:2,自引:0,他引:2  
采用饱和水溶液法进行β-胡萝卜素-β-环糊精包合物的制备,通过正交实验确定了最佳工艺条件:β-环糊精与β-胡萝卜素的分子摩尔比4.5∶1;温度50℃;转速600r/min,搅拌时间7h,包合率高达83.18%。于40℃,5000LX条件下进行光稳定性加速实验,结果表明,包合物稳定性与β-胡萝卜素样品相比较有了很大提高。  相似文献   

7.
目的:研究VD3-β-环糊精包合物的制备工艺并考察包合物的有关性质。方法:以包合率为评价指标采用正交试验设计对VD3-β-环糊精包合物的制备方法进行工艺优化,利用IR、1H-NMR鉴定包合物的形成,并考察包合物的稳定性及相对生物利用度。结果:试验证明β-环糊精包合VD3的最佳工艺为β-环糊精与VD3的投料比为15∶1,在80℃条件下搅拌5h;IR、1H-NMR分析证明了包合物的形成;同时包合物提高了原VD3的稳定性及生物利用度。结论:VD3-β-环糊精包合物稳定性及生物利用度明显提高,该方法具有较高的实用价值。  相似文献   

8.
为了优化月见草油-β-环糊精包合物的制备工艺。采用饱和水溶液法制备月见草油β-环糊精包合物,以β-环糊精与月见草油的投料比、包合温度和包合时间为考察因素,月见草油包合物包合率和包合物得率的综合评分为指标,通过星点设计-响应面法优化制备工艺,经红外分析和差示扫描量热进行包合物形成的验证。最佳包合工艺为β-环糊精与月见草油投料比为5∶1 m L/g、包合温度55℃、包合时间1.8 h,在此最佳工艺条件下,月见草油-β-环糊精包合物的包合率和包合物得率分别为81.56%和92.28%。实验证明月见草油可与β-环糊精形成稳定的包合物,为月见草油的应用开发提供了理论基础。  相似文献   

9.
目的:考察青藤碱与环糊精形成包合物的最佳条件,测定青藤碱与不同环糊精的包合常数并进行体外释放研究。方法:通过单因素及正交试验确定青藤碱与不同环糊精形成包合物的最佳条件,并在此条件下利用相溶解度法测定青藤碱与β-环糊精、羟丙基-β-环糊精、γ-环糊精的包合常数,对包合物进行体外释放试验研究。结果:青藤碱与不同环糊精形成包合物的最佳条件为物质的量的1:1、包合温度50℃、包合反应3h、包合反应时溶液pH7,青藤碱与β-环糊精、羟丙基-β-环糊精、γ-环糊精的包合常数分别为501.1、150.0、600.3L/mol。结论:青藤碱与环糊精可以形成1:1型稳定的包合物,以环糊精为载体制备的不同青藤碱-环糊精包合物相对于青藤碱具有明显的缓释作用。  相似文献   

10.
苯乙醇香精与β-环糊精包合物的制备工艺研究   总被引:7,自引:0,他引:7  
采用饱和水溶液法制备苯乙醇香精与β-环糊精包合物,通过正交实验确定出最佳工艺条件,即:苯乙醇香精与β-环糊精的配比为1∶6,包合温度为50℃,包合时间为2.5h;在此条件下苯乙醇香精与β-环糊精的包合率为84.75%。包合物紫外光谱的最大吸收波长和吸光度显示,苯乙醇香精与β-环糊精包合物和两者的混合物以及β-环糊精本身显著不同,验证了环糊精包合了苯乙醇香精分子。  相似文献   

11.
辣椒红色素与β-环糊精包合物的制备及理化性质研究   总被引:1,自引:1,他引:1  
阐述了辣椒红色素与β-环糊精包合物的制备及其理化性质的研究.采用饱和水溶液搅拌法制备包合物,通过紫外分光光度法对其进行鉴定,并将包合物与色素在光照、不同pH值、不同温度下比较各自的色泽损失率.结果表明:色素由包合前的脂溶性变为包合后的水溶性,且包合物在光照、不同pH值及不同温度条件下的稳定性与色素相比均有一定程度的提高.  相似文献   

12.
对维生素D_3-β-环糊精(VD_3-β-CD)包合物的稳定性及其改善挤压营养米品质进行了研究。结果表明,V_D_3-β-CD包合物增强V_D_3储藏稳定性;降低挤压营养米米粉糊化焓,提高挤压营养米复水率、糊化度,延缓营养米回生老化,改善挤压营养米品质;在本试验条件下,V_D_3-β-CD包合物最佳添加量为1.5%。  相似文献   

13.
目的筛选槲皮素-β-环糊精包合物及槲皮素-羟丙基-β-环糊精包合物的最佳制备方法及工艺条件,并进行包合物的鉴定及溶解度测定。方法采用溶液搅拌法、超声波法和研磨法比较包合物的制备效果;溶液搅拌法的包合物制备工艺以包合得率为指标,分别考察投料摩尔比、包合温度、包合时间及溶液p H值对包合物得率的影响,并通过正交试验优化;采用薄层鉴别法及红外光谱法对包合物进行鉴定。结果通过比较包合物得率,采用溶液搅拌法制备槲皮素-β-CD和槲皮素-HP-β-CD包合物更好;包合物制备的最佳工艺条件为:投料摩尔比为1:1、制备温度为60℃、制备时间为2 h、溶液p H值为7;在此条件下制备槲皮素-β-CD包合物的平均包合得率为66.22%,制备槲皮素-HP-β-CD包合物平均得率可达71.49%;槲皮素-β-CD包合物溶解度为26.94μg/mL,槲皮素-HP-β-CD包合物在水中的溶解度可增加到2224.21μg/mL。槲皮素在0.8~6.4μg/mL浓度范围内呈良好的线性关系(r=0.9999)。结论溶液搅拌法使槲皮素与环糊精衍生物形成包合物,且明显增加了槲皮素在水中的溶解性,有利于药物在体内的吸收并提高了生物利用率。  相似文献   

14.
熊果酸-β-环糊精包合物制备工艺研究   总被引:4,自引:0,他引:4  
为研究熊果酸的β-环糊精包合物制备工艺,以包合率为指标,用β-环糊精包合熊果酸.通过单因素和正交实验确定了最佳工艺条件为:包合的最佳条件为:摩尔比3∶1,反应时间160 min,反应温度60℃.红外光谱鉴定形成了熊果酸-β-环糊精包合物.  相似文献   

15.
研究匙羹藤总皂甙与β-环糊精包合物的制备工艺.采用饱和水溶液法,在单因素试验的基础上,通过正交试验,考察投料比、包合温度、包合时间对包合物收率和包合率的影响.最佳包合条件为:β-环糊精与匙羹藤总皂甙比例1:1,包合温度50℃,包合时间3 h.该制备工艺稳定,可用于匙羹藤总皂甙-β-环糊精包合物的制备.  相似文献   

16.
以包埋率为评价指标,在单因素实验基础上应用响应面法对芸香苷-羧甲基-β-环糊精包合物制备工艺条件进行优化并进一步用红外光谱、扫描电镜等方法对包合物进行了鉴定。结果表明芸香苷-羧甲基-β-环糊精包合物最佳制备工艺条件为包埋质量比1∶4,包埋温度60℃,包埋时间2 h,包埋率达62.92%,红外光谱、扫描电镜结果表明芸香苷已包埋在羧甲基-β-环糊精的内腔中。此条件下包合物的水溶解度得到明显提高,达到1760 mg/L。本实验采用的包埋方法和包埋材料可以改善芸香苷的水溶解性。  相似文献   

17.
为了建立番茄红素-β环糊精包合物的制备工艺,以番茄红素为试验材料,采用饱和溶液法制备番茄红素-β环糊精包合物。以有机溶剂比例、主客体摩尔比、搅拌时间、搅拌温度、冷藏时间为考察因素,包合率为主要评价指标,采用单因素试验和正交试验对番茄红素-β环糊精包合物的制备工艺参数进行优化。试验结果表明:番茄红素-β环糊精包合物的最佳制备工艺参数为丙酮/正己烷(V/V)2︰1、番茄红素/β-环糊精(摩尔比)1︰200、搅拌时间20 h、搅拌温度50℃、冷藏时间12 h,在此条件下包合率高达71.8%。极差分析与方差分析结果表明,主客体摩尔比是影响包合效果最显著的因素。  相似文献   

18.
为提高肉桂醛的稳定性,采用超声波法制备肉桂醛-β-环糊精包合物,用正交试验优化制备工艺。结果表明,超声制备最佳工艺条件是肉桂醛与β-环糊精摩尔比为1.0:1.0、β-环糊精水溶液浓度为4%、表面活性剂用量为水量的0.7%、温度60℃、超声功率264W、时间40min,在此条件下包埋率可达到98.75%,收率80.32%,平均粒径376.3nm。影响包埋率的因素顺序为:超声时间温度表面活性剂用量芯壁比β-环糊精水溶液浓度功率。验证和放大试验表明,超声波法制备肉桂醛-β-环糊精包合物工艺稳定。红外光谱和差示扫描量热分析证实了包合物的形成,热重分析表明肉桂醛被包埋后热稳定性提高。对包合物三种制备方法的比较表明,超声波法效果最好,其次是饱和水溶液法,效果最差的是研磨法。超声波法制备包合物与饱和水溶液法相比,包合物收率及载药量相差不大,但超声波法制备的包合物其包埋率及包埋效率比饱和水溶液法分别提高3.10%和4.83%。超声波法制备包合物效果明显好于研磨法,包埋率、包合物收率、载药量及包埋效率比研磨法分别提高7.59%、7.83%、1.62%和8.16%,超声波法是制备高质量纳米级肉桂醛-β-环糊精包合物的简便有效方法。  相似文献   

19.
为提高番茄红素的稳定性,采用超声法制备番茄红素β-环糊精包合物,并对其稳定性进行研究。采用L9(34)正交试验对超声法制备番茄红素β-环糊精包合物工艺进行优选,以包合率为指标,考察超声功率、超声时间、番茄红素与β-环糊精物质的量的比对番茄红素包合的影响。结果得到包合的最佳工艺条件为超声功率250W、超声时间25min、番茄红素与β-环糊精物质的量的比1:150,番茄红素的包合率可达73.6%,包合的番茄红素在60d内保留率达到92.2%。超声法制备番茄红素β-环糊精包合物是一种适宜的提高番茄红素的稳定性的方法。  相似文献   

20.
阐述了紫荆花红色素与β-环糊精包合物的制备及其稳定性的研究。采用饱和水溶液搅拌法制备包合物。通过红外谱图对照分析对其进行鉴定,并将包合物与色素在光照、不同p H、不同温度下比较各自的色泽损失率。结果表明:色素包合物在光照、不同p H、不同温度条件下的稳定性与包合物相比均有一定程度的提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号