首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
杨峰  石春琦  张润曦  赖宗声 《微电子学》2016,46(6):758-761, 776
设计了一种工作在亚阈值区的高精度、低电压、低功耗CMOS基准电路。电路采用0.18 μm CMOS工艺实现,在1.2 V电源电压下,输出202 mV的基准电压,在-40 ℃~130 ℃范围内的温度系数为6.5×10-5/℃,消耗2.46 μA电流。电源电压从1.1 V变化到3.6 V时,输出基准电压仅变化0.336 mV。该基准电路的电源电压抑制比(PSRR)在直流处达到-93 dB,10 MHz处达到-63 dB。设计了一种多路快速启动电路,只需13 μs即可完成启动。利用高阈值电压晶体管与普通阈值电压晶体管的Vth之差作为负温度系数电压源,使输出基准电压对工艺角不敏感。  相似文献   

2.
设计了一种超低功耗、无片上电阻、无双极型晶体管的基于CMOS亚阈值特性的基准电压源。采用Oguey电流源结构来减小静态电流,从而降低功耗,并加入工作于亚阈值区的运算放大器,在保证低功耗的前提下,显著提高了电源电压抑制比。采用1.8 V MOS管与3.3 V MOS管的阈值电压差进行温度补偿,使得输出电压具有超低温度系数。采用共源共栅电流镜以提高电源电压抑制比和电压调整率。电路基于SMIC 0.18 μm CMOS工艺进行设计和仿真。仿真结果表明,在-30 ℃~125 ℃温度范围内,温漂系数为9.3×10-6/℃;电源电压为0.8~3.3 V时,电压调整率为0.16%,电源电压抑制比为-58.2 dB@100 Hz,电路功耗仅为109 nW,芯片面积为0.01 mm2。  相似文献   

3.
基于通过负温度系数电压控制工作于亚阈值区MOS管栅压产生随温度变化的补偿电流原理,采用中芯国际0.18μm CMOS工艺,设计了一款高精度二阶温度补偿带隙基准电压源。测试结果表明,当电源电压大于1.6V时,电路能够产生稳定的1.21V输出电压;在电源电压为1.6~3.4V,-20~135℃温度范围内,最小温度系数为2×10-6/℃,最大温度系数为3.2×10-6/℃;当电源电压在1.6~3.4V之间变化时,输出电压偏差为0.6mV,电源调整率为0.34mV/V;在1.8V电源电压下,电源抑制比为69dB,因此能够适应于高精度基准源。  相似文献   

4.
一种高温度性能的CMOS带隙基准源   总被引:1,自引:1,他引:0  
提出了一种正负温度系数电流产生电路,使用分段线性温度补偿技术用于传统的电流模式基准电路中,改善CMOS带隙基准电路在宽温度范围内的温度漂移.采用0.18μm CMOS混合信号工艺,对该电路进行了设计.在1.8V的电源电压条件下,基准输出电压为0.801 V,温度系数在-40℃-125℃范围内可达到2.7ppm/℃,电源电压从1.5V变化到3.3V的情况下,带隙基准的输入电压调整率为1.2mV/V.  相似文献   

5.
基于0.18 μm CMOS工艺设计了一种高性能的亚阈值CMOS电压基准。提出了一个电压减法电路,将两个具有不同阈值电压且工作在亚阈值区晶体管的栅源电压差作为电压基准输出。所提出的电压减法电路还可以很好地消除电源电压变化对输出基准的影响。后仿仿真结果表明,所设计的电压基准在0.55~1.8 V电源电压范围内,线性灵敏度为0.053%/V~0.121%/V;在-20 ℃~80 ℃范围内,温度系数为9.5×10-6/℃~3.49×10-5/℃;在tt工艺角、0.55 V电源电压下,电源抑制比为-65 dB@100 Hz,功耗为3.7 nW。芯片面积为0.008 2 mm2。该电路适用于能量采集、无线传感器等低功耗应用。  相似文献   

6.
夏晓娟  谢亮  孙伟锋 《半导体学报》2008,29(8):1523-1528
介绍了一种基于亚阈区VGS和ΔVGS的CMOS基准电压源电路,电路不采用二极管和三极管. 电路采用正负温度系数电流叠加的原理,可以产生多个基准电压值的输出,适用于同时需要多个基准的电路系统中. 所设计的电路在0.6μm CMOS工艺线上流水验证,芯片面积为0.023mm2. 测试结果表明,电源电压为2.5~6V时,最大的电流为8.25μA;电源电压为4V时,常温下所获得的三个基准电压值为203mV,1.0V及2.05V. 温度由0℃变化到100℃时,芯片的温度系数为31ppm/℃,平均的线性度为±0.203%/V. 此电路结构已经成功应用于背光LED驱动电路中.  相似文献   

7.
提出了一种新颖的带有软启动的高精密CMOS带隙基准电压源。采用UMC的0.6μm2P2M标准CMOS工艺进行设计和仿真,HSPICE模拟表明该电路具有较高的精度和稳定性,带隙基准的输出电压为1.293 V,在1.5 V~4 V电源电压范围内基准随输入电压的最大偏移为0.27 mV,基准的最大静态电流约为19μA;在-40℃~120℃温度范围内,基准随温度的变化约为4.41 mV,产生的偏置电流基本上不受电源电压的影响,而与温度成线性关系;在电源电压为3 V时,基准的总电流约为14.25μA,功耗约为42.74μW;并且基准具有较高的电源抑制比和较低的噪声(小于500 nV/Hz1/2),基准的输出启动时间约为25μs。  相似文献   

8.
崔嘉杰  罗萍 《微电子学》2014,(4):416-419
基于CSMC 0.5μm标准CMOS工艺,设计了一种高精度电流型CMOS带隙基准电压源。仿真结果表明,温度在-40℃~125℃范围内,基准输出电压的温度系数为1.3×10-5/℃;电源电压在3.3~5 V之间变化时,基准输出电压变化为0.076 mV,电源抑制比PSRR为-89 dB。同时,该电路包含修调电路,可在不同工艺角下进行校正,具有温度系数低、电源抑制比高、精度高等特点。  相似文献   

9.
介绍了一种基于亚阈区VGs和△Vos的CMOS基准电压源电路,电路不采用二极管和三极管.电路采用正负温度系数电流叠加的原理,可以产生多个基准电压值的输出,适用于同时需要多个基准的电路系统中.所设计的电路在0.6μm CMOS工艺线上流水验证,芯片面积为0.023mm2.测试结果表明,电源电压为2.5~6V时,最大的电流为8.25μA;电源电压为4V时,常温下所获得的三个基准电压值为203mV,1.0V及2.05V.温度由0℃变化到100℃时,芯片的温度系数为31ppm/℃,平均的线性度为±0.203%/V.此电路结构已经成功应用于背光LED驱动电路中.  相似文献   

10.
介绍了一种基于亚阈区VGs和△Vos的CMOS基准电压源电路,电路不采用二极管和三极管.电路采用正负温度系数电流叠加的原理,可以产生多个基准电压值的输出,适用于同时需要多个基准的电路系统中.所设计的电路在0.6μm CMOS工艺线上流水验证,芯片面积为0.023mm2.测试结果表明,电源电压为2.5~6V时,最大的电流为8.25μA;电源电压为4V时,常温下所获得的三个基准电压值为203mV,1.0V及2.05V.温度由0℃变化到100℃时,芯片的温度系数为31ppm/℃,平均的线性度为±0.203%/V.此电路结构已经成功应用于背光LED驱动电路中.  相似文献   

11.
设计了一款工作在低电源电压且与绝对温度成正比(PTAT)的基准电路;采用衬底偏置技术、电阻分压作为PMOS放大器的输入和用工作在亚阈值区的NMOS管代替衬底PNP管三种方法,使得该电路可以在低电源电压下工作,且工作电流较小。该电路采用CSMC 0.6μm2P2 M工艺,电源电压为1.2 V、温度为0~100℃时,输出电压的温度系数为0.912 mV/K,电源电流为6.8μA;当电源电压在1.1~2.0 V变化时,室温下的输出电压是461.4±0.4 mV。  相似文献   

12.
基于低压技术,利用亚阈值区MOS管代替寄生BJT管,设计了一种工作在低电源电压下的基准电压源,并对基准电压进行了温度补偿。采用TSMC 0.18 μm CMOS工艺对电路进行了设计和仿真。仿真结果显示:电路正常工作的最低电源电压为0.6 V,当电源在0.6~2.0 V范围内变化,基准输出电压仅变化了1.75 mV;在0.6 V电源电压下,-20 ℃~125 ℃温度范围内,温度系数为2.8×10-5/℃,电源抑制比为52.47 dB@10 kHz,整个电路的功耗仅为12 μW。  相似文献   

13.
采用Chartered 0.18-μm CMOS工艺,设计了一种基于MOS亚阈值特性的全MOS结构电压基准源。它利用VT的正温度特性补偿VTH的负温度特性,以实现一个零温度系数的输出电压。为了实现较低的功耗,大部分MOS晶体管均工作在亚阈值区。仿真结果表明:电路可工作在0.7V到3.6V电压范围内;在0℃~120℃范围内,电压基准的温度系数可达2.97×10-6/℃;在1V电源电压下,电路的静态功耗和输出电压值分别为1.48μW和430.6mV;在没有滤波电容的情况下,在1kHz时,输出电压的电源电压抑制比为-61dB。  相似文献   

14.
张强  陈贵灿  田泽  王进军  李攀 《电子工程师》2007,33(9):21-24,59
设计了一款带有软启动电路的精密CMOS带隙基准源,并且利用PN结正向导通电压具有负温度系数和基准源提供的偏置电流具有正温度系数的原理实现了过温保护功能。采用UMC公司0.6μm 2P2M标准CMOS工艺进行设计和仿真,HSPICE模拟表明带隙基准的输出电压为1.293 V,且具有较高的精度和稳定性。在1.5V~4.0V的电源电压范围内基准随输入电压的最大偏移为0.27 mV;在-40℃~120℃的温度范围内,基准随温度的变化约为4.41 mV;基准的输出启动时间约为25μs;当工作温度超过160℃时过温保护电路将输出使能信号关断整个系统。  相似文献   

15.
提出了一种新颖的带有软启动的高精密CMOS带隙基准电压源。采用UMC的0.6μm2P2M标准CMOS工艺进行设计和仿真,HSPICE模拟表明该电路具有较高的精度和稳定性,带隙基准的输出电压为1.293V,在1.5V~4V的电源电压范围内基准随输入电压的最大偏移为0.27mV,基准的最大静态电流约为19μA;在-40℃~120℃的温度范围内,基准随温度的变化约为4.41mV,产生的偏置电流基本上不受电源电压的影响,而与温度成线性关系;在电源电压为3V时,基准的总电流约为14.25μA,功耗约为42.74μW;并且基准具有较高的PSRR和较低的噪声(小于500nV/HZ1/2),基准的输出启动时间约为25μs。  相似文献   

16.
提出了一种超低温漂、低功耗亚阈值全CMOS基准电压源。利用工作在亚阈值区的3.3 V MOS管与1.8 V MOS管的栅源电压差,产生具有负温度系数的ΔVTH和具有正温度系数的VT,经过相互调节,得到与温度无关的基准电压。采用了共源共栅电流镜,以降低电源抑制比(PSRR)和电压调整率。基于SMIC 0.18 μm CMOS工艺对电路进行了仿真。仿真结果表明,在-22 ℃~142 ℃温度范围内,温度系数为2.8×10-6/℃;在1.3~3.3 V电源电压范围内,电压调整率为0.48%;频率为100 Hz时,PSRR为-62 dB;功耗仅为191 nW,芯片面积为0.005 mm2。  相似文献   

17.
余国义  邹雪城 《微电子学》2007,37(1):113-117
基于亚阈值MOSFET,提出了一种新颖的高电源抑制比(PSRR)电流基准源。基准电路充分利用工作在亚阈值区MOSFET的I-V跨导特性和改进的具有高负反馈环路增益预电压调制,为电流基准核电路提供电源。电路设计采用SMIC 0.18μm标准CMOS数字工艺技术。在1.5 V电源电压下,电路输出1.701μA的稳定电流,在-40℃到150℃温度范围内,具有非常低的温度系数(2.5×10-4μA/℃);并且,在宽泛的频率范围内,具有很好的电源噪声抑制能力。电源抑制比在dc频率为-126 dB,在高于1 MHz频率范围内,仍能保持-92 dB。基准电路在高于1.2V电源电压下可以稳定工作,并具有很好的CMOS工艺兼容性。  相似文献   

18.
超低压差线性稳压器的带隙基准电路设计   总被引:1,自引:0,他引:1  
余华  邹雪城  陈朝阳 《半导体技术》2006,31(7):542-545,548
设计了一种采用电流反馈及电阻分压技术,输出可调的,用于单片集成超低压差的CMOS线性稳压器的高性能带隙基准电压电路.它可产生1~1.2217V多个电压基准;当温度从-40~125℃变化时,温度系数为23×10-6/K;具有较高的电源抑制比(PSRR),其值为78dB.输入电压在2.5~6V变化时,基准电压的变化范围为1.221685±0.055mV,该电路还可为其它电路模块提供PTAT电流.  相似文献   

19.
1V电源非线性补偿的高温度稳定性电压带隙基准源   总被引:7,自引:0,他引:7  
秦波  贾晨  陈志良  陈弘毅 《半导体学报》2006,27(11):2035-2039
阐述了电源电压为1V的非线性补偿CMOS电压带隙基准源,该基准源具有很高的温度稳定性.基准源电路中运用了rail-to-rail运算放大器(OPA).根据测试结果,室温下的输出电压为351.9mV,当温度在15~100℃变化时,输出电压在351.5~352.0mV之间变化,温度系数约为16.7ppm/℃.电路的功耗为0.16mW,芯片面积是0.18mm2.  相似文献   

20.
1V电源非线性补偿的高温度稳定性电压带隙基准源   总被引:1,自引:0,他引:1  
阐述了电源电压为1V的非线性补偿CMOS电压带隙基准源,该基准源具有很高的温度稳定性.基准源电路中运用了rail-to-rail运算放大器(OPA).根据测试结果,室温下的输出电压为351.9mV,当温度在15~100℃变化时,输出电压在351.5~352.0mV之间变化,温度系数约为16.7ppm/℃.电路的功耗为0.16mW,芯片面积是0.18mm2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号