首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polymers are widely used for sliding couples against metals and other materials. Polypropylene is a polymer used in variety of applications includes packaging, laboratory equipments, automotive components, etc. Polypropylene is often desirable automotive material due to its low cost, colorability, chemical resistance and UV stability. In addition the range of potential polypropylene uses is nearly unlimited through the use of modifiers, additives and fillers. In the present work, the sliding wear of polypropylene (PP) and carbon nanotube (CNT) blends are evaluated as a function of applied load and composition against a steel counter face in dry condition. The addition of CNT in PP in wear performance is investigated and presented in detail. Microstructure and worn surfaces of samples were observed by scanning electron microscope. The wear phenomenon has been discussed based on wear losses and worn surfaces.  相似文献   

2.
Abstract

The main objective of the present paper is to develop high wear resistance carbon fibre reinforced polyether ether ketone composite with addition of multiwall carbon nanotubes. These compounds were well mixed in a batch mixer, and compounded polymers were fabricated into sheets of known thickness by compression moulding. Samples were tested for wear resistance with respect to different concentration of fillers. The wear resistance properties of these samples depend on filler aspect ratio. Wear resistance of composite with 20 wt-% of carbon fibre increases when multiwall carbon nanotubewas introduced. The worn surface features have been examined using scanning electron microscope. Photomicrographs of the worn surfaces revealed higher wear resistance with the addition of carbon nanotube. Also better interfacial adhesion between carbon and vinyl ester in carbon reinforced vinyl ester composite was observed.  相似文献   

3.
纳米Cu添加剂润滑摩擦表面分析   总被引:3,自引:1,他引:2  
利用T-11摩擦磨损实验机进行了用纳米铜添加剂润滑的摩擦磨损实验,利用光学显微镜和扫描电镜对摩擦表面进行了形貌分析,利用能谱仪进行了磨痕表面元素分析.结果表明,磨痕表面形成了富含Cu元素的表面膜,静止上试样的磨痕表面比运动的下试样表面形成的薄膜厚,在摩擦表面有原始微损伤(磨削沟槽)的部位边缘有明显的Cu元素沉积,而在沟槽的底部没有Cu元素.分析认为摩擦使得表面金属活化,不断产生新鲜金属表面,有利于润滑剂中的纳米Cu与金属结合形成表面膜.  相似文献   

4.
The wear behavior of alumina femoral heads was examined at follow-up periods between 7.7 and 10.7 years. Four head retrievals of the same size (28 mm in diameter) were divided into two groups with different design characteristics. Systematically using scanning electron and atomic force microscopy procedures, wear characteristics could be classified on the entire heads according to five zones with increasing degrees of wear damage (Grade 1–5), in addition to one zone of stripe wear (Grade SW). The stripe wear zone showed quite different topographical features as compared to frictionally worn zones. Furthermore, hip implants designed with different clearances are shown to lead to different wear patterns on the femoral head surface, the smaller the clearance the wider the worn surface area. Cathodoluminescence piezo-spectroscopy provided information about the residual stress state in surfaces worn to different degrees and helped clarifying the wear mechanisms on the microscopic scale.  相似文献   

5.
Friction-wear properties of the ZrSiO4 reinforced samples were measured and compared with those of plain bronze based ones. For this purpose, density, hardness, friction coefficient wear behaviour of the samples were tested. Microstructures of samples before and after sintering and worn surfaces were also investigated by scanning electron microscopy (SEM), and the wear types were determined. The optimum friction-wear behaviour was obtained in the sample compacted at 500 MPa and sintered at 820℃. Density of the final samples decreased with increasing the amount of reinforcing elements (ZrSiO4) before pre-sintering. However after sintering, there is no change in density of the samples including reinforcing elements (ZrSiO4). With increasing friction surface temperature, a reduction in the friction coefficient of the samples was observed. However, the highest reductions in the friction coefficients were observed in the as-received samples containing 0. 5% reinforced ZrSiO4. The SEM images of the sample indicated that while bronze-based break lining material without ZrSiO4 showed abrasive wear behaviour, increasing the amount of ZrSiO4 resulted a change in abrasive to adhesive wear mechanism. All samples exhibited friction-wear values, which were within the values shown in SAE-J661 standard. With increasing the amount of reinforcing ZrSiO4, wear resistance of the samples was increased. However samples reinforced with 5% and 6% ZrSiO4 showed the best results.  相似文献   

6.
本文以Ni20Cr合金为基体添加稀有金属Ti、W粉末及石墨后,充分混合,采用机械合金化及热压烧结工艺制备了NiCr金属基复合材料,研究了石墨含量对NiCr金属基复合材料的组织结构和摩擦学性能的影响。在UMT-3高温摩擦试验机上进行了该复合材料同Al_2O_3陶瓷球的滑动摩擦磨损实验,利用扫描电子显微镜(SEM)、X射线衍射仪(XRD)对复合材料及其摩擦测试后的形貌与结构进行观察分析,结果表明:当所添加石墨的质量分数为3wt.%时,复合材料具有相对较好的力学性能和摩擦学性能;当测试温度低于300℃时,摩擦表面未形成有效的摩擦膜,故磨损率较高;当温度高于500℃时,摩擦层中含有摩擦氧化物,摩擦表面被光滑氧化物所组成的润滑膜覆盖,对磨面具有很好的保护作用,因而磨损率降低。  相似文献   

7.
Solid particle erosion, electrical-arc-induced wear, fretting corrosion and fretting wear modes were studied. Scanning electron microscope examinations generally show significant differences in the different wear modes. Further scanning and transmission electron microscope examinations of the cross sections of worn samples show very little, if any, plastic deformation near the worn surfaces. Microhardness measurements on the cross section of arced samples show an increase of about 25% near the worn surface. Surface analysis of fretting and fretting corrosion wear samples show the existence of an adherent layer that is heavily oxidized in most cases. The source of the adherent layer can be either of the two mating surfaces. It was also found that the same surface may undergo both loss of the original surface layer and gain of an adherent layer. The metallurgical techniques described in this paper can be successfully used to diagnose the wear of solid surfaces.  相似文献   

8.
纳米锑颗粒作为液压油添加剂的摩擦学性能   总被引:1,自引:0,他引:1  
为了研究纳米锑颗粒作为润滑油添加剂的润滑摩擦学性能,充分发挥其减磨、抗磨效果,采用CFT-1型材料性能测试仪对比研究了不同载荷下纳米锑粒子作为液压油添加剂的摩擦学性能,通过SEM对试样摩擦表面进行了形貌分析,利用EDX进行了磨痕表面元素分析.结果表明:不同载荷下纳米锑颗粒在液压油中的最佳添加量不同,重载荷下纳米锑粒子表现出优良的抗磨减摩性能;纳米锑粒子在一定程度上可以提高液压油的抗磨减摩性能,这是由于磨痕表面形成了含锑元素的表面膜,起到良好的抗磨减摩效果.  相似文献   

9.
Abstract

Metal matrix composites, based on 316L stainless steel and reinforced with TiC and TiCN particles, were manufactured following a powder injection moulding route: mixing, preparation of feedstock, moulding, debinding and sintering. The 316L stainless steel and carbide powders were dry mixed and moulded with wax based binder. The critical powder loading for injection moulding was 62·5 vol.-% for all samples. Binder debinding was performed by solvent and thermal method. After debinding, the samples were sintered at 1250 and 1385°C for 1 h in pure H2. Metallographic studies were conducted to extend densification and the corresponding microstructural changes. The sintered samples were characterised by measuring tensile strength, hardness and wear behaviour. Wear loss was determined for all samples after wear tests. All powder, fracture surfaces of moulded and sintered samples, and worn surfaces of all the samples, were examined using scanning electron microscope. The sintered density of injection moulded 316L stainless steel samples, reinforced and unreinforced, increases with increasing sintering temperature. The addition of TiC and TiCN improves the hardness and wear resistance with increasing sintering temperature.  相似文献   

10.
This article presents an effect of matrix alloy and influence of SiC particle on the sliding wear characteristics of high strength aluminium alloys AA7010, AA7009 and AA2024, composites was examined under varying applied pressure and a fixed sliding speed of 3.35 m/s. The results revealed that the wear resistance of the composite was noted to be significantly higher than that of the alloy and is suppressed further due to addition of SiC particles. The overall observation among the matrix alloys, AA7010 alloy shows maximum wear resistance than that of the other, and can withstand the seizure pressure up to 2.6 MPa. The wear mechanism was studied through worn surfaces and microscopic examination of the developed wear tracks. The wear mechanism strongly dictated by the formation and stability of oxide layer, mechanically mixed layer (MML) and subsurface deformation and cracking. The overall results indicate that the high strength aluminium alloys and composite could be considered as an excellent material where high strength and wear resistance components are prime importance especially designing for structural applications in aerospace and general engineering sectors.  相似文献   

11.
Two wear regimes were observed for a 95% alumina tested in dry sliding wear conditions using a pin on disc test geometry. Specimens prepared with lapped and polished surfaces exhibited low wear rates at applied loads of 10 and 40 N but ground surfaces wore rapidly at loads of 40 N and above. The surfaces that had experienced high wear rates contained more networks of microcracks and had rougher surface profiles than the mildly worn surfaces. X-ray line broadening analysis indicated that the wear debris had a particle size of 10 to 30 nm and contained plastic deformation, but no evidence of significant plastic deformation was found in the pin surfaces.Theoretical explanations are proposed for the existence of two types of wear behaviour: subsurface crack growth is believed to cause high wear rates, whilst low wear rates are due to a very fine scale abrasion of the surface. Recommendations are made on some of the precautions that should be taken to use alumina successfully in dry sliding wear applications.  相似文献   

12.
The effects of various reinforcements (boron carbide ‐silicon carbide‐alumina) with constant volume fraction (20 %) on the abrasive wear properties of AA6061 matrix composites produced with hot pressing process were investigated. The wear tests were carried out using a pin‐on‐disk wear tester by sliding at sliding speeds of 1.2 m/s against silicon carbide paper. Applied normal loads have 5, 10 and 15 N magnitude at room temperature. The wear morphologies of the worn surfaces were analyzed using a scanning electron microscope in order to examine the wear characteristics and to investigate the wear mechanisms. The effects of reinforcement type on the wear behavior of AA6061 matrix composites were observed. Results exhibited that the optimum wear resistance obtained with the boron carbide reinforced composite parts. All reinforced samples showed better wear resistance compared to as‐received samples in all the studied conditions. Scanning electron microscope characterization showed that test specimens have complex combination of wear mechanisms on the worn surface.  相似文献   

13.
The present study deals with an investigation on dry sliding wear behavior of grain refined Sc-free 7042 aluminum alloy by using a pin-on-disc wear test machine. Al–5Ti–1B and Al–15Zr master alloys were used as grain refining agents. The optimum amounts of added Ti and Zr in the alloy were found to be 0.03 wt.% and 0.3 wt.%, respectively. Extrusion was carried out and T6 heat treatment ware applied for all rod specimens before testing. Significant improvement in mechanical properties was obtained with the addition of grain refiners. The worn surfaces were characterized by energy dispersive X-ray spectrometry microanalysis. Results showed that the wear resistance of unrefined alloy increased with the addition of both grain refiners. Furthermore, the worn surface studies showed a mixed type of wear mechanisms; delaminating, adhesive and abrasive which took place at higher applied load.  相似文献   

14.
Adhesive and (three-body) abrasive wear modes in the interface between a 303 steel shaft and a 52100 steel ball-bearing inner race were studied. Scanning electron micrographs showed significant differences in the different stages of adhesive and abrasive wear modes. Further scanning electron microscopy examinations of the cross section of the worn samples showed severely strained layers on the shafts from adhesive wear and heat-affected transformed surface layers on the bearing races from both adhesive and abrasive wear tests. Transmission electron microscopy examinations also showed a severely strained layer in the case of the adhesively worn shaft. A significant increase in hardness was measured on shafts from both wear modes. Auger analysis of worn surfaces detected the existence of modified layers and material removal. The metallurgical techniques described in this paper can be successfully used to diagnose wear.  相似文献   

15.
常用的牙科用复合光敏树脂的摩擦学性能研究   总被引:2,自引:0,他引:2  
采用Charisma、Elitefil、TPH、Veridonfil4种常用的牙科用复合光敏树脂材料,对其颗粒含量、断裂韧性、以及表面硬度进行了测量,并在球-面往复摩擦磨损试验机上考察了4种牙科用复合光敏树脂材料的摩擦磨损特性。结果表明:TPH具有最低的摩擦系数,Charisma、Elitefil、Veridonfil的摩擦系数均较低;在相同条件下,TPH具有较高的断裂韧性和耐磨性。摩损机理主要表现为由树脂机体摩损和塑性变形引起的颗粒脱落和磨粒磨损。  相似文献   

16.
Ce-TZP-(Al2O3)陶瓷与Cr12钢的摩擦磨损行为   总被引:1,自引:0,他引:1  
本文研究了Ce-TZP-(Al2O3)陶瓷在不同载荷(100 ̄500N),不同介质环境(空气、水、醋酸、氨水)下与Cr12钢的磨擦磨损特性。根据磨损前后摩擦副表面形貌特征下相成份变化,分析了氧化锆陶瓷的磨损机理。1000N时,干摩擦摩擦系数与磨损率较高,此时磨损机理以磨粒磨损为主,在液体介质中摩擦系数与磨损率都较低,磨损机理以分层剥落为主;200N以上时,陶瓷摩擦面上发生马氏体相变,磨损机理以脆性  相似文献   

17.
为了改善铜合金材料表面的摩擦磨损性能,采用压制加工方法,在CuSn6锡青铜试件表面制备出凹坑织构,分别进行压制凹坑织构试件和无织构试件的摩擦磨损试验,测量了摩擦系数和磨损量,观察了磨损表面及磨屑,分析了压制凹坑织构对试件磨损性能的影响。结果表明:与无织构试件相比,压制凹坑织构的磨损量减少。无织构试件的磨损机制为磨粒磨损与黏着磨损,压制凹坑织构的磨损机制为磨粒磨损和少量黏着磨损。压制凹坑边缘存在硬化区域,提高了试件表面平均硬度。凹坑容屑能力与边缘硬化区域有助于改善压制凹坑试件磨损性能。  相似文献   

18.
1.IntroductionPlasma-sprayed zirconia ceramic coating is widelyused for heat engines,gas turbine parts,aerospace seals,and lubrication systems,because of its special mechani-cal,chemical,and thermal properties[1].Previous stud-ies of the friction and wear patterns of zirconia andits coatings have been reported[2~14].The wear be-havior of zirconia ceramics seemed to be very sensi-tive to the structure of the material,and to test pa-rameters such as temperature,environment,and slid-ing speed[2].…  相似文献   

19.
The objective in this work was to study the effect of different material counterfaces on the Ultra High Molecular Weight Polyethylene (UHMWPE) wear behavior. The materials used as counterfaces were based on CoCrMo: forged with hand polished and mass finished, CoCrMo coating applied on the forged CoCrMo alloy obtained by Physical Vapour Deposition (PVD). A hip joint simulator was designed and built for these studies. The worn surfaces were observed by optical and scanning electron microscopy. The results showed that the hand polished CoCrMo alloy caused the higher UHMWPE wear of the acetabular cups. The CoCrMo coating caused the least UHMWPE wear, while the mass finished CoCrMo alloy caused an intermediate UHMWPE wear. It is shown that the wear rates obtained in this work are closer to clinical studies than to similar hip joints simulator studies.  相似文献   

20.
Wear is the loss of dimension through plastic deformation, which originates at interfaces between two sliding surfaces. Hence, it is logical to correlate the worn surface features and their morphologies with the resulting wear properties. The two dimensional extent of such wear damage accumulations (i.e., impressions of ploughing lines along with adhered debris fraction), quantified from the worn surface fractographs are observed to predict the nature of the variation in the wear properties with various loading conditions, for different grades of magnesium alloys at ambient temperature. Microstructural investigation of the worn surfaces and the wear debris have been carried out to explain the observed results and to understand the wear micro-mechanisms of different magnesium alloys under various loading conditions. In the present study, a new technique has been employed to measure the extents of ploughing lines impressions with adhered debris formation on the worn surface fractographs off-line under image processing platform.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号