首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we investigate the transport properties of field-effect transistors (FETs) based on various kinds of fullerene (C(60), C(70), and C(84)) peapods. The encapsulation of various fullerenes inside single-walled carbon nanotubes (SWNTs) is characterized by TEM and Raman spectroscopy. Our results indicate that the transport characteristics of p-type SWNTs are extremely sensitive to the encapsulation of various kinds of fullerene. In the absence of light illumination, the threshold voltage of p-type SWNTs shifts towards positive values after C(60) and C(70) encapsulation, and ambipolar transport characteristics are observed for C(84) peapods. The photoinduced electron transfer phenomenon is observed for fullerene peapods under light illumination. The optical response for C(60) and C(70) peapod FET devices is reflected in a shift of threshold voltage towards negative values, and a recoverable characteristic is observed when light is off. After a long period of light illumination, in contrast to p-type C(60) and C(70) peapods, an n-type transport characteristic is observed on C(84) peapods.  相似文献   

2.
We filled SWNTs with the paramagnetic fullerene Sc@C82 to form peapods. The interfullerene 1D packing distance measured using TEM is d = 1.1 +/- 0.02 nm. The Sc@C82 in SWNT peapods continuously rotated during the 2 s TEM exposure time, and we did not see the Sc atoms. However, Sc@C82 metallofullerenes in MWNT peapods have periods of fixed orientation, indicated by the brief observation of Sc atoms. La@C82 peapods were also prepared and their rotational behavior examined. The interfullerene 1D packing of both La@C82 and Sc@C82 peapods is identical and thus independent of the charge transfer state for these paramagnetic fullerenes. The La@C82 metallofullerenes in the peapods have fixed orientations for extended periods of time, up to 50 s in some cases. The La@C82 spontaneously rotates rapidly between fixed orientations.  相似文献   

3.
A series of fullerenes and endohedral metallofullerenes peapods have been synthesized by supercritical method in high filling rate. The interaction between SWNTs and various kinds of fullerenes (C60, C70, C78, C84) and metallofullerenes (Gd@C82, Er@C82, Ho@C82, Y@C82) has been further investigated. The slight blue shift of G-band in Raman spectra with respect to pristine SWNTs was attributed to the charge transfer from SWNTs to fullerenes cage. The obvious RBM shift strongly depended on the distance between the inner wall of the SWNTs and the fullerene cage and also partly associated with the electronic structure of the fullerene. These results indicated that the interaction between fullerenes and SWNTs, which was considered to be the van de walls interaction, can be influenced by the cage size and the kind of fullerenes.  相似文献   

4.
The purpose of the current study is to investigate the effect of defects on a single wall carbon nanotube (SWCNT) filled with C60 (peapod). A series of Molecular Dynamics simulation are carried out to investigate the compressive and tensile properties of the CNTs and peapods. The paper presents the effect of the two common crystallography defects (Stone–Wales defect and vacancy defect) on mechanical properties of the peapod. The tension and compression of the defective peapod is determined and is compared with an empty SWCNT. It is shown that encapsulating the C60s into the nanotubes under compression enhances the compressive strength of the structure. However, it does not have a favorable influence on the tensile strength of nanotubes. It is seen that defects weaken compressive and tensile strength of peapods. The effects of different defects on compressive properties of peapods do not much differ from each other. On the other hand, the type of defect is a dominant factor for nanotubes under tension.  相似文献   

5.
Kim JJ  Lee BJ  Lee SH  Jeong GH 《Nanotechnology》2012,23(10):105607
The electronic, physical and optical properties of single-walled carbon nanotubes (SWNTs) are governed by their diameter and chirality, and thus much research has been focused on controlling the diameter and chirality of SWNTs. To date, control of the catalyst particle size has been thought to be one of the most promising approaches to control the diameter or chirality of SWNTs owing to the correlation between catalyst particle size and tube diameter.In this study, we demonstrate the size engineering of catalytic nanoparticles for the controlled growth of diameter-specified and horizontally aligned SWNTs on quartz substrates. Uniformly sized iron nanoparticles derived from ferritin molecules were used as a catalyst, and their size was intentionally decreased via thermal heat treatment at 900?°C under atmospheric Ar ambient. ST-cut quartz wafers were used as growth substrates in order to elucidate the effect of the size of the nanoparticles on the tube diameter and the effect of catalyst size on the degree of parallel alignment on the quartz substrates. SWNTs grown by chemical vapor deposition using methane as feedstock exhibited a high degree of horizontal alignment when the particle density was low enough to produce individual SWNTs without bundling. Annealing for 60?min at 900?°C produced a reduction of nanoparticle diameter from 2.6 to 1.8?nm and a decrease in the mean tube diameter from 1.2 to 0.8?nm, respectively. Raman spectroscopy results corroborated the observation that prolonged heat treatment of nanoparticles yields thinner tubes with narrower size distributions. The results of this work suggest that straightforward thermal annealing can be a facile way to obtain uniform-sized SWNTs as well as catalytic nanoparticles.  相似文献   

6.
The effect of single-wall carbon nanotubes (SWNTs) on nonlinear optical absorption of D-shaped fibers with versatile the remaining length of the cladding region and the interaction length are investigated. The optical absorption based on SWNTs is induced by the energy bandgap in SWNTs. The bandgap energy depends on the tube diameter of SWNTs. After fabricating versatile D-shaped fiber, SWNTs are deposited on the polished surface of D-shaped fibers. The cladding region of single mode fibers is removed by a side-polishing technique and the D-shaped fiber is obtained. In the D-shaped fiber, the cladding region is thin enough to induce the evanescent field coupling of core mode to the other modes of the SWNT-overlay. The nonlinear absorption based on the SWNTs-overlay is changed by the remaining length of cladding region and the interaction length because the coupling strength of evanescent field strongly depends on the different remaining lengths of the cladding region and the interaction lengths as well.  相似文献   

7.
We present simultaneous near-field photoluminescence (PL) and Raman imaging of single-walled carbon nanotubes (SWNTs) with a spatial resolution better than 15 nm. Highly localized excitation is used to visualize the spatial extent of the contributing excited states. For SWNTs on glass, we typically observe highly confined PL from short segments of about 20 nm in length. The PL from micelle-encapsulated SWNTs on mica is extended along the tube up to several hundreds of nanometers. We find that near-field enhancement is much stronger for photoluminescence than for Raman scattering, an observation that is explained by the low intrinsic quantum yield of SWNTs.  相似文献   

8.
C60 fullerene peapods and double-walled carbon nanotubes (DWCNTs) containing highly 13C enriched C60 and inner tubes, respectively, are studied using Raman spectroscopy and in situ Raman spectroelectrochemistry in order to follow the influence of 13C enrichment on the vibrational pattern of these carbon nanostructures. The Raman response of 13C60 after encapsulation in fullerene peapods differs from that of isotope-natural species, (Nat)C60. The Raman A(g)(2) mode of encapsulated 13C60 is upshifted in frequency compared to that of the (Nat)C60 peapods with the same filling factor. The chemical doping of 13C60 peapods (peapod = C(60)@SWCNT) with K-vapor leads to the downshift of the A(g)(2) mode, similar to the case of (Nat)C60 peapods. The 13C60 peapods were successfully transformed into DWCNTs, which confirms high filling of single-walled (SW) CNTs with 13C60. The DWCNTs exhibited distinctly downshifted G and D Raman modes for inner tubes, which proves that only inner tubes were enriched by 13C. The in situ Raman spectroelectrochemistry of (Nat)C60 exhibits strong anodic enhancement, while for 13C60 peapods the enhancement is only weak. On the other hand, the electrochemical charging of the inner-tube-labeled DWCNTs (13C(i)-DWCNTs) followed the behavior of ordinary (Nat)C(i)-DWCNTs as indicated by in situ Raman spectroelectrochemistry. In addition, the spectroelectrochemical behavior of the G mode of inner tubes in 13C(i)-DWCNTs is followed from the start of the electrochemical doping, which was not feasible for (Nat)C(i)-DWCNTs.  相似文献   

9.
A major obstacle for the applications of single‐walled carbon nanotubes (SWNTs) in electronic devices is their structural diversity, ending in SWNTs with diverse electrical properties. Catalytic chemical vapor deposition has shown great promise in directly synthesizing high‐quality SWNTs with a high selectivity to specific chirality (n, m). During the growth process, the tube–catalyst interface plays crucial roles in regulating the SWNT nucleation thermodynamics and growth kinetics, ultimately governing the SWNT chirality distribution. Starting with the introduction of SWNT growth modes, this review seeks to extend the knowledge about chirality‐selective synthesis by clarifying the energetically favored SWNT cap nucleation and the threshold step for SWNT growth, which describes how the tube–catalyst interface affects both the nucleus energy and the new carbon atom incorporation. Such understandings are subsequently applied to interpret the (n, m) specific growth achieved on a variety of templates, such as SWNT segments or predefined molecular seeds, transition metal (Fe, Co and Ni)‐containing catalysts at low reaction temperatures, W‐based alloy catalysts, and metal carbides at relatively high reaction temperatures. The up to date achievements on chirality‐controlled synthesis of SWNTs is summarized and the remaining major challenges existing in the SWNT synthesis field are discussed.  相似文献   

10.
Three kinds of polymer, polyimide without side-chain (PI), polyimide-graft-glyceryl 4-nonylphenyl ether (PI-GNE), and polyimide-graft-bisphenol A diglyceryl acrylate (PI-BDA), have been synthesized and used to disperse single-walled carbon nanotubes (SWNTs) and to improve the interfacial bonding between SWNTs and cyanate ester (CE) matrix. Visual observation, UV-vis-near-IR (UV-vis-NIR) spectra, and atomic force microscopy (AFM) images show that both PI-GNE and PI-BDA are highly effective at dispersing and debundling SWNTs in DMF, whereas PI is less effective. Interaction between SWNTs and PI, PI-GNE or PI-BDA was confirmed by computer simulation and Raman spectra. A series of CE-based composite films reinforced with different loadings of SWNTs, SWNTs/PI, SWNTs/PI-GNE and SWNTs/PI-BDA were prepared by solution casting. It was found that, because of the unique side-chain structure of PI-BDA, SWNTs/PI-BDA disperse better in CE matrix than do SWNTs/PI-GNE, SWNTs/PI, and SWNTs. As a result, SWNTs/PI-BDA/CE composites have the greatest improvement in mechanical properties of the materials tested. These results imply that the choice of side-chain on a dispersant is very important to the dispersion of SWNTs in matrix and the filler/matrix interfacial adhesion, which are two key requirements for achieving effective reinforcement.  相似文献   

11.
Density functional theory has been performed to investigate the chemisorption and diffusion of H atoms on the surface of single-walled carbon nanotubes (SWNTs). The results show that the binding energy of a single hydrogen atom on the SWNTs surface decreases as the diameter of the tube increases and is not affected by the chirality of the tube much. Two hydrogen atoms favor binding at adjacent and opposite positions rather than at alternate carbon site. As for the diffusion of H atoms on the tube, it is found that an isolated H atom can diffuse rather than desorb on the small SWNT upon heating. As the tube diameter increases, the diffusion barrier for H atom on the surface decreases. Further study shows that when the H atom diffuses around another H atom, the diffusion barriers vary with the relative sites of the two H atoms.  相似文献   

12.
Carbon single-wall nanotubes (SWNTs) are studied as the thermal-absorption coating on a large area pyroelectric detector. The SWNTs were produced by a laser vaporization method and dispersed onto the detector surface by use of a simple airbrush technique. The detector was based on a 1-cm-diameter, 60-microm-thick lithium tantalate disk having nickel electrodes. We report the spectral responsivity of the detector ranging from 600 to 1800 nm, as well as the spatial and directional uniformity at 850 nm. Using Drude and Lorentzian dielectric functions and an effective medium approximation to obtain the indices of refraction of semiconductor and metallic SWNTs, we compared the expected theoretical relative responsivity for the two types of tube with the measured relative responsivity of the detector. Values of thermal conductivity, specific heat, and damage threshold obtained from the literature are compared with properties of alternatives for thermal coatings such as gold-black and carbon-based paint.  相似文献   

13.
Hot-wire chemical vapor deposition of carbon nanotubes   总被引:2,自引:0,他引:2  
Hot-wire chemical vapor deposition (HWCVD) has been employed for the continuous gas-phase generation of both carbon multi-wall and single-wall nanotube (MWNT and SWNT) materials. Graphitic MWNTs were produced at a very high density at a synthesis temperature of 600 °C. SWNTs were deposited at a much lower density on a glass substrate held at 450 °C. SWNTs are typically observed in large bundles that are stabilized by tube–tube van der Waals’ interactions. However, transmission electron microscopy analyses revealed only the presence of isolated SWNTs in these HWCVD-generated materials.  相似文献   

14.
Current rectification property of as-grown single-walled carbon nanotubes (SWNTs) is investigated. The SWNTs are grown by chemical vapor deposition (CVD) process. The process allowed to grow long strands of SWNT bundles, which are then used to fabricate multiple arrays of switching devices with the channel length of 3, 5, 7 and 10 microm on a 15 mm x 15 mm SiO2 on Si substrate. Regardless of the channel length, a majority of the fabricated devices show current rectification characteristics, with high throughput of current (I) in the forward bias (V) giving the forward and reverse current ratio (Ifor/Irev) of approximately 10(6). Atomic force microscopic (AFM) analysis of the device structure and surface topology of SWNT suggest the observed rectification of current to possibly result from (a) cross-tube junctions, (b) a mixture of metallic and semiconducting tubes in the SWNT bundles, and/or (c) chirality change along a single tube. The exact mechanism underlying the observed rectification could not be conclusively established. However, the analyses of the experimental results strongly suggest the observed rectification to result from Schottky-type diode properties of SWNTs with mixed chirality along the tube.  相似文献   

15.
Gong K  Zhu X  Zhao R  Xiong S  Mao L  Chen C 《Analytical chemistry》2005,77(24):8158-8165
This study demonstrates a novel electrochemical method for sensitive determination of biological thiols including homocysteine, cysteine, and glutathione based on rational functionalization of single-walled carbon nanotubes (SWNTs) with synthetic triptycene orthoquinone (TOQ). Unlike previous strategies used for the functionalization of the carbon nanotubes to fabricate new kind of electrochemically functional nanostructures, the method demonstrated here is essentially based on understanding of the redox properties inherent in the SWNTs themselves. It is demonstrated that the electrochemical oxidation of the thiols at the SWNT-modified electrode is redox-mediated by the quinone-like functional groups at the tube ends and that the low density of such functional groups leads to a follow-up oxidation of the thiols at a more positive potential at the electrode. To mimic the redox properties of the SWNTs and thus to increase the catalytic sites onto the SWNTs, we rationally choose the synthetic TOQ and attach such a compound onto the SWNTs. As a result, it is found that the rational attachment of TOQ onto the SWNTs substantially results in a sufficient electrocatalysis toward the thiols at a low potential of 0.0 V with enhanced sensitivities (i.e., almost by a factor of 10-fold) for the determination of such kind of species in relative to those at the SWNT-modified electrode. The high sensitivity and the good stability as well as the high reproducibility of the TOQ/SWNT-modified electrodes substantially make them very useful for reliable and durable determination of the biological thiols.  相似文献   

16.
Liu G  Zhao Y  Deng K  Liu Z  Chu W  Chen J  Yang Y  Zheng K  Huang H  Ma W  Song L  Yang H  Gu C  Rao G  Wang C  Xie S  Sun L 《Nano letters》2008,8(4):1071-1075
We have developed a low-cost and effective method to align single-walled carbon nanotubes (SWNTs) using a series of diamond wire drawing dies. The obtained SWNTs are highly dense and perfectly aligned. X-ray diffraction (XRD) indicates that the highly dense and perfectly aligned SWNTs (HDPA-SWNTs) form a two-dimensional triangular lattice with a lattice constant of 19.62 A. We observe a sharp (002) reflection in the XRD pattern, which should be ascribed to an intertube spacing 3.39 A of adjacent SWNTs. Raman spectra reveal that the radical breath mode (RBM) of SWNTs with larger diameter in the HDPA-SWNTs is suppressed compared with that of as-grown SWNTs. The HDPA-SWNTs have a large density, approximately 1.09 g/cm 3, and a low resistivity, approximately 2 m Omega cm, at room temperature, as well as a large response to light illumination.  相似文献   

17.
Hydrogen storage in carbon nanotubes: a multi-scale theoretical study   总被引:1,自引:0,他引:1  
A Combination of quantum and classical calculations has been performed to investigate the hydrogen storage in single-walled carbon nanotubes (SWNTs). The ab-initio calculations at the Density Functional level of Theory (DFT) show the nature of hydrogen interaction in selected sites of a (5,5) tube walls. On top of this, Molecular Dynamics simulations model large scale nanotube systems and reproduce the storage capacity under variant temperature conditions. Our results indicate that the interaction of hydrogen with SWNTs is very weak and slightly increase of temperature, causes hydrogen diffusion from the tube walls.  相似文献   

18.
Single-walled carbon nanotubes (SWNTs) are Introduced as a chemical sensor for the detection of sulfur dioxide (SO2) molecules. For a single bundle of SWNTs, current-voltage (I-V) curves were measured for a series of different temperatures under adsorption of SO2 molecules. The I-V characteristics for a "MAT"-type thin film SWNTs, with respect to the amount of SO2 adsorbed, were measured at room temperature and compared directly with O2 adsorption. The change in current upon the adsorption of SO2 is distinctly higher than that of O2, and is also reversible for adsorption and successive evacuation. Thus, the results strongly suggested that a thin film of SWNTs can be used as a chemical sensor in the nanometer scale devices.  相似文献   

19.
We use molecular mechanics calculations to study size effects on mechanical properties of carbon nanotubes. Both single-walled nanotubes (SWNTs) and multi-walled nanotubes (MWNTs) are considered. The size-dependent Young's modulus decreases with the increasing tube diameter for a reactive empirical bond order (REBO) potential function. However, we observe a contrary trend if we use other potential functions such as the modified Morse potential function and the universal force field (UFF). Such confliction is only obtained for small tubes within cutoff diameters (3 nm for REBO and 1.5 nm for others). In light of these predictions, Young's moduli of large nanotubes concur with experimental results for all the potential functions. No matter which potential function is used, the Poisson's ratio decreases with the increasing tube diameter. We also study the chirality effects on mechanical properties of SWNTs. We find that the Young's moduli are insensitive to the chirality of nanotubes. The chirality effect on the Poisson's ratio is significant for the UFF but not the REBO or modified Morse potential functions.  相似文献   

20.
Closed (empty) and opened (water‐filled) single‐walled carbon nanotubes (SWNTs), such as the (12,1) SWNTs shown (foreground), can be clearly resolved in 2D Raman maps (background) of bile salt solubilized SWNTs in water, report Wim Wenseleers and co‐workers on p. 2274. While being of fundamental interest, this also provides a method to monitor tube opening/closing under various treatments (insets, left to right: as‐produced; mechanically treated; chemically treated; reclosed SWNTs by annealing).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号