首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper gives a design method for the single-polarization optical fiber which satisfies simultaneously the wide single-polarization bandwidth, the large modal birefringence, and the zero total dispersion at the wavelength of 1.55 μm. As a type of single-polarization fiber, the optical fiber with two hollow circular pits across the core-clad interface is proposed and designed. The normalized power (=Δ the power in the core/the total power) in the core is also evaluated for the designed fibers. It was found from the numerical analysis that when the zero total dispersion is satisfied at the wavelength of 1.55 μm, the maximum modal birefringence of 1.133×10-3 and the maximum single-polarization bandwidth of 100.6 nm are attained for the relative index difference of 1.6%. Then the normalized power in the core is 0.859  相似文献   

2.
李杨  廖同庆  刘道军  井保密  吕晓光  严艺 《红外与激光工程》2017,46(9):922005-0922005(6)
针对超强能量密度的飞秒脉冲很难在传统光纤中传输的情况,设计了一款用于高功率飞秒脉冲传输的空心单模Bragg光纤。首先基于一维光子晶体的光子禁带特性选择了制作空心Bragg光纤的材料,接着利用光学软件FDTD Solutions分析了光纤各结构参数对光纤模式的影响,并对传输特性进行了分析。随后,通过在光纤包层中引入缺陷层的方法对其进行了进一步的优化,有效调控了该款光纤的色散曲线分布。经全带宽扫描可知,该款空心Bragg光纤单模传输的带宽达100 nm,完全满足了100 fs光脉冲的传输要求。  相似文献   

3.
本文用传输矩阵法分析了啁啾Bragg光纤光栅的反射谱特性及时延特性,同时给出了用142mm长相位掩模板和扩束技术研制的色散补偿线性啁啾Bragg光纤光栅的反射谱特性及传输实验结果.实验研制的线性啁啾Bragg光纤光栅样品带宽为0.56~0.84nm,可实现对普通光纤色散补偿100km以上.  相似文献   

4.
Theory shows that the maximum gain and bandwidth of one-pump fiber optical parametric amplifiers made from high-nonlinearity fiber, operated with a pump wavelength λp far from the fiber zero-dispersion wavelength λ0 can greatly be improved by periodic dispersion compensation. We have performed experiments and obtained good agreement with theory: for λp=1542 and λ0=1591 nm, we have increased the bandwidth from 7 to 28 nm, and the maximum gain from 15 to 20 dB, by splicing three pieces of standard fiber at regular intervals in a 40-m long nonlinear fiber  相似文献   

5.
张磊 《光电子快报》2010,6(6):401-405
The propagation of femtosecond laser pulses with wavelengths of 1550 nm, 1064 nm, 800 nm and 700 nm, respectively, which are in the normal dispersion region of the nano-structured photonic crystal fiber (N-PCF) with interesting broadband normal dispersion and highly nonlinear properties, is studied. For the effect of chirp variation mainly induced by group velocity dispersion (GVD) and self-phase modulation (SPM), after propagation over a short length, the wave breaking occurs. Namely, oscillatory structures are presented near pulse edges and sidelobes appear in the pulse spectrum. In the case of 800 nm, after the propagation of 20 mm, a super flat spectrum is obtained. The bandwidth of the super flat spectrum is associated with the dispersion length and the nonlinear length. By choosing N-PCF and laser pulse with appropriate parameters, a broadband super flat spectrum in a short length can be achieved.  相似文献   

6.
The group velocity vg of light in two-port ring- resonator (TPRR) circuits with loss is theoretically studied. We point out four possible operation regimes, i.e., "slow" light with positive vg, "slow" light with negative vg, "fast" light with negative vg, and "fast" light with positive vg, where "slow" means |vg| < c and "fast" means |vg| > c, with c denoting the velocity of light in vacuum. The temporal behavior of pulses passing through the TPRR for the four operation regimes and the potential of "slow" light TPRR either with positive or negative vg for sensing applications are also discussed.  相似文献   

7.
We report a novel dispersion tunable device for first-order dispersion compensation. It is based on a fiber Bragg grating written in a tapered fiber with a specific profile. The taper profile allows tuning the dispersion of the grating by stretching the fiber while the linearity of the group delay is preserved. A device with 0.8 nm of useful bandwidth and dispersion value tunable over more than 400 ps/nm is reported.  相似文献   

8.
The propagation and switching of short pulses in an active two-core fiber nonlinear directional coupler have been investigated theoretically by using the split-step Fourier method. The analysis highlights the effects of the second-order coupling coefficient dispersion, the linear gain coefficient, and the finite-gain bandwidth on the switching and propagation of short pulses. The research indicates that the linear gain can sharpen the switching characteristic and reduce considerably the switching threshold power, as well as significantly increase the switching efficiency with the influences of the second-order coupling coefficient dispersion. However, both the second-order coupling coefficient dispersion and the finite-gain bandwidth degrade the switching characteristics. In addition, the finite-gain bandwidth of linear gain not only suppresses significantly the pulse compression and amplification caused by the linear gain coefficient, but also suppresses effectively the frequent pulse fluctuation on pulse propagation induced by the second-order coupling coefficient dispersion; consequently, as in the case of the passive fiber coupler, optical pulses tend to restore periodical coupling propagation in active two-core fiber coupler.   相似文献   

9.
Twin fiber grating tunable dispersion compensator   总被引:1,自引:0,他引:1  
A new tunable dispersion compensator that does not suffer from higher order dispersion is reported. The device consists of two quadratically chirped fiber Bragg gratings, each with linear strain actuators. The module has a tuning range of 500 ps/nm and a bandwidth of 0.5 nm. In a 40-Gb/s return-to-zero system, the dispersion penalty tolerance is extended from 100 to 600 ps/mm  相似文献   

10.
Slow-light optical buffers: capabilities and fundamental limitations   总被引:3,自引:0,他引:3  
This paper presents an analysis of optical buffers based on slow-light optical delay lines. The focus of this paper is on slow-light delay lines in which the group velocity is reduced using linear processes, including electromagnetically induced transparency (EIT), population oscillations (POs), and microresonator-based photonic-crystal (PC) filters. We also consider slow-light delay lines in which the group velocity is reduced by an adiabatic process of bandwidth compression. A framework is developed for comparing these techniques and identifying fundamental physical limitations of linear slow-light technologies. It is shown that slow-light delay lines have limited capacity and delay-bandwidth product. In principle, the group velocity in slow-light delay lines can be made to approach zero. But very slow group velocity always comes at the cost of very low bandwidth or throughput. In many applications, miniaturization of the delay line is an important consideration. For all delay-line buffers, the minimum physical size of the buffer for a given number of buffered data bits is ultimately limited by the physical size of each stored bit. We show that in slow-light optical buffers, the minimum achievable size of 1 b is approximately equal to the wavelength of light in the buffer. We also compare the capabilities and limitations of a range of delay-line buffers, investigate the impact of waveguide losses on the buffer capacity, and look at the applicability of slow-light delay lines in a number of applications.  相似文献   

11.
We demonstrate resonant grating couplers with the broadest bandwidth (565 nm) reported to date, using microbend gratings in dispersion-optimized few-mode fibers. Control of modal dispersion enables the demonstration of spectrally flat (< 0.25-dB ripple) coupling. This enables a compact (1 cm), broad-band (110 nm) variable optical attenuator, which is highly cost-effective, since device assembly simply involves pressing an as-drawn fiber between two corrugated blocks.  相似文献   

12.
In this letter, we demonstrate an adjustable dispersion slope compensator for waveform distortion compensation based on a nonlinearly strain-chirped fiber Bragg grating. The dispersion slope of the device can be tuned up to -18.9 ps/nm2 with a bandwidth >2.4 nm. After transmission through a 120-km-long dispersion-shifted fiber, the resulting waveform distortion for a 2.65-ps pulse is successfully compensated by using this device  相似文献   

13.
基于啁啾光纤布拉格光栅的流速传感器   总被引:1,自引:1,他引:0  
设计了一种基于啁啾光纤布拉格光栅(CFBG)的新型 流速传感器,包括CFBG压强传 感机构和文丘里管。压强传感机构中,密闭铝箔管横截面两边的压力差导致矩形悬臂梁变 形,从而引起粘贴在悬臂梁侧边的CFBG的反射光谱带宽发生变化。通过 检测其带宽,得到被测流体的速度。实验表明,CFBG反射光谱带宽对温度不敏 感,流速传感器的动态测量范围为8~100mm/s,设计方案是切实可行 的。  相似文献   

14.
The dispersion characteristics of apodized, linearly chirped fiber Bragg gratings and their potential as dispersion compensators have been studied systematically. It is shown that the positive hyperbolic-tangent profile results in an overall superior performance, as it provides highly linearized time-delay characteristics with minimum reduction in the linear dispersion. To compensate for the linear dispersion of 100 km of standard telecom fiber over certain bandwidth (in nanometers), the required grating length is 19.24 cm/nm  相似文献   

15.
The design of heavy metal fluoride fibers having segmented-core refractive index profiles and operating a bimodal regime, with small modal dispersion or good equalization, between the LP01 and LP11 modes in the 1.3-μm wavelength region is discussed. The concept of effective cutoff of the LP02 mode has been used in order to maximize the operating V value. A practical bimodal equalized design example which has negligible extrinsic losses is provided in which equalization between the modes is within ±25 ps/km over a wavelength interval of 160 nm (~1.2-1.36 μm). Hence, the predicted bandwidth of the bimodal fiber is high over a broad wavelength interval  相似文献   

16.
A novelty dispersion ultra-flattened Bragg photonic crystal fiber (PCF) has been fabricated in this paper.The fiber is composed of compound cores and periodical claddings with 11 coaxial rings.It has flattened dispersion of 8.54±1.3 ps-(nm· km)-1 in the communication wavelength range of 1460-1625 nm.Its dispersion slope alters from -0.0428 to 0.0392ps·nm-2·km-1.The low attenuation of 0.52 dB/km and low bending loss of 0.09 dB at 1550 nm of the fiber are also achieved.The Bragg PCF has enormously potential application in the fields of dense wavelength division multiplexing systems because of its superior dispersion properties and easy splicing performances.  相似文献   

17.
The pressure-dependent Sellmeier coefficients are essential to characterize the optical design parameters for the optical fiber communication systems under deep sea environmental conditions. These coefficients are calculated for densified silica glass for the first time to compute the pressure dependence of material dispersion at any wavelength from the ultraviolet (UV) to 1.71 μm. The zero dispersion wavelength λ0 (1.2725 μm at 0.1 106 N m -2) varies linearly with pressure, and dλ0/dP is 0.0027 nm/(106 N m-2). The calculated value is approximately one-third of the experimental value of 0.0076 nm/(106 N m-2) for a germanium-doped dispersion shifted fiber having λ0=1.5484 μm and -0.0070 nm/(106 N m-2) for a pure silica-core fiber cable having λ0 =1.2860 μm. Since, the refractive indexes are increased with pressure, the negative value of shift of the zero-dispersion wavelength is erroneous. The explanations are due to Ge-doping in silica glass, a possible temperature fluctuation of 0.16°C in the pressure-dependent measurement system of the zero dispersion wavelength and different experimental conditions of the silica glass and the optical fibers. This anomaly can also be attributed to the internal strain development at the core-cladding and fiber-jacketing boundaries due to pressure, which shows a larger experimental value. It accounts for the experimental values satisfactorily  相似文献   

18.
A tunable four-channel dispersion compensator is achieved using fiber Bragg grating technology and applying a temperature gradient along the grating. Any dispersion from -370 to -1420 ps/nm could be obtained.  相似文献   

19.
报道了一种全光纤超宽带光谱的类噪声脉冲锁模光纤激光器。为了加宽锁模光谱,利用腔内色散管理和非线性技术,使在58m腔内具有小的反常色散,平均色散系数为0.12 ps/nm/km。实验获得了超过1300nm--1750nm超宽带光谱锁模类噪声脉冲,光谱20-dB带宽达到362nm,3-dB带宽达到102nm。类噪声脉冲的光谱宽度远超过掺铒光纤的增益带宽。  相似文献   

20.
An efficient scheme to change the chirp rate of a fiber Bragg grating (FBG) has been developed based on a specially-designed cantilever beam with the beam-bending method. It allows, to date, the largest tuning range of 36 nm in reflection bandwidth of a chirped-FBG (CFBG) while keeping the center wavelength nearly fixed during the tuning process. Using this method, bandwidth-tunable fiber grating filters with tunable chromatic dispersion or differential group delay have been demonstrated. Channel spacing-tunable multi-wavelength filters based on both sampled- and superimposed-CFBGs have also been realized. Moreover, tuning of the bandwidth and channel spacing is continuous with this scheme that makes the achieved devices more flexible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号