首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism of three-body abrasive wear of TiC-base cermets was studied. The wear rate of a series of cermets with different percentage of NiMo binder phase (20–60 wt%) was studied. Silica sand was used as an abrasive. The wear rate of the cermets decreases with the increase of TiC and Mo content, which corresponds to the increase in the bulk hardness. The post-run wear tracks of the worn blocks were analyzed with SEM. The material is removed by several processes such as extrusion and removal of the binder and also fractures of the carbide grains and the carbide network.  相似文献   

2.
Jorn Larsen-Basse 《Wear》1985,105(3):247-256
It has previously been proposed that preferential removal of the cobalt binder is an important mechanism in the abrasive wear of cemented carbides in the WC-Co family. It is here demonstrated that binder extrusion occurs also in metal-to-metal sliding wear contacts. The wear scar generated by sliding a hardened steel ball repeatedly over a polished WC-Co surface was studied by scanning electron microscopy. The extruded cobalt fragments accumulate at surface defects, such as cracks caused by the sliding loaded ball, and gradual microfragmentation of the carbide grains follows. The energy required to extrude the cobalt and to cause the gradual change in surface layer microstructure is provided by the frictional forces.  相似文献   

3.
《Wear》2006,260(7-8):815-824
The friction and wear behaviour of cermets/steel rubbing pairs were investigated. Friction and wear tests were carried out using three different crèmets on the base of tungsten, titanium and chromium carbides under dry sliding conditions against steel disk (0.45% C). Sliding wear tests were carried out using modified block-on-ring equipment at a sliding speed of 2.2 m/s and normal load 40 N.It is shown that wear resistance and coefficient of friction depend on the type and chemical composition of the cermets. The WC–Co cermets have the highest wear resistance. The wear rate of WC–Co and TiC–NiMo cermets increased with increasing binder content in the cermets. The wear of Cr3C2–Ni cermets is more complicated and depends on the composition of cermets. The wear of WC–Co cermets is caused mainly by preferential removal of the cobalt binder, followed by fracture of the intergranular boundaries and fragmentation of the carbide grains. The main wear mechanism in the TiC–NiMo cermets is polishing (micro-abrasion) and adhesion, resulting in a low wear rate. The main wear mechanism of Cr3C2–Ni cermets involves thermal cracking and fatigue-related crushing of large carbide grains and carbide framework and also adhesion.  相似文献   

4.
Dynamic friction and wear experiments were conducted in a scanning electron microscope. The wear behavior of pure tungsten carbide and composite with 6 and 15 weight percent cobalt binder was examinded. Etching of the binder was done to selectively determine the role of the binder in the wear process. Dynamic experiments were conducted as the WC and bonded WC cermet surfaces were transversed by a 50 micron radiused diamond stylus. These studies show that the predominant wear process in WC is fracture initiated by plastic deformation. The wear of the etched cermets is similar to pure WC. The presence of the cobalt binder reduces both friction and wear. The cementing action of the cobalt reduces granular separation and promotes a dense polished layer because of its low shear strength film-forming properties. The wear debris generated from unetched surface is approximately the same composition as the bulk.  相似文献   

5.
A rubber wheel type test apparatus has been constructed which allows abrasion testing to be conducted in slurry or dry environments in otherwise identical conditions. Abrasion tests of a steel, a sintered tungsten carbide–cobalt hardmetal and an HVOF sprayed nickel chrome–chromium carbide cermet coating have been performed in dry and aqueous slurry conditions, the latter with both neutral and acidic carriers. It has been shown that the aqueous carrier acts as an effective lubricant and thus significantly reduces the abrasion rate over that observed in dry conditions. However, enhancement of corrosion by use of an acid slurry lead to an increase in the rate of material removal over that of the neutral aqueous conditions in all cases. Increases were small for the corrosion resistant cermet coating and moderate for the steel. Significant enhancement of wear was observed for the sintered WC–Co hardmetal where rapid removal of the cobalt binder by the acid resulted in a change in dominant mechanism of carbide removal from attritive wear to pullout.  相似文献   

6.
Abstract

WC–Co cemented carbides, including small angular tungsten carbides particles, are used extensively to improve wear resistance. Some additives can affect mechanical and wear properties of these materials. In this study, the effect of VC and (Ta, Nb)C content on wear of WC–10Co were considered. The tests were performed at normal load of 230 N and sliding distance of 800 m up to 3200 m. Wear tests were carried out using dry sand/rubber wheel apparatus. Wear rate, standard and modified wear coefficients were calculated. The microstructures of prepared specimens were examined by optical microscopy. The morphological analysis of the worn surfaces was made by SEM. The results show that VC content has more effect than (Ta, Nb)C content on wear behaviour. Wear mechanism is different in the specimens, but removal of cobalt rich phase and fracture of carbide grains is clear in all of specimens. Abrasive wear is prevailing in all specimens.  相似文献   

7.
The surface degradation of tungsten carbide based thermal spray coatings when exposed to fine-particle slurry abrasion has been investigated. The coatings that were studied contain binder-phase constituents consisting of either nickel or cobalt. The coatings were deposited onto test cylinders using a detonation gun device. After applying approximately 0.15 mm thickness of thermal spray coating, the coatings were ground, then diamond polished to achieve surface roughnesses of 0.03 μm Ra or less. The coatings were exposed to a three-body abrasive wear test involving zirconia particles (less than 3 μm diameter) in a water-based slurry. Results show that preferential binder wear plays a significant role in the wear of these tungsten carbide coatings by fine abrasives. In the comparison presented here, the coating containing nickel-based binder with a dense packing of primary carbides was superior in terms of retaining its surface finish upon exposure to abrasion. The coating containing a cobalt binder showed severe surface degradation.  相似文献   

8.
C. Allen  M. Sheen  J. Williams  V. A. Pugsley 《Wear》2001,250(1-12):604-610
The wear performance of ultrafine-grained tungsten carbide–cobalt (WC–Co) hard metals during three-body abrasion and particle erosion has been evaluated and compared to that of similar conventional coarser grained hard metals. The tungsten carbide grain size varied between 0.5 and 3 μm with cobalt contents ranging from 6 to 15%. Silica particles were used in both forms of testing. Erosion was carried out at 60 ms−1 at an impact angle of 75° and abrasion at a velocity of 0.5 ms−1 and a load of 50 N.

The wear resistance of the ultrafine grades was found to be at least double that of the closest conventional fine grained hard metals. These increases in wear performance are considerably higher than any corresponding increase in hardness which is, at most, 25% and is not achieved at the expense of fracture toughness which is maintained at a similar level to that of conventional fine grained hard metals. The increase in wear resistance coincides with a change in the mechanism of material removal. Sub-micron materials experience ductile deformation and bulk removal of material whilst coarser grades display more localised response with extensive fragmentation of the WC grains.  相似文献   


9.
Abstract

Laser cladded coatings have been used extensively to extend the service life of components exposed to severe abrasive wear. One of the main wear resistant materials used in laser cladding is ceramic–metallic composite. Despite extensive use of this class of material, there is very limited knowledge regarding mechanical degradation mechanisms, such as cracking and plastic deformation, under different wear conditions. In this investigation a mixture of nickel alloy and tungsten carbide powders were used to deposit the coating. Two types of tungsten carbide powders with spherical and angular carbides were employed. The microstructures of the coatings were analysed thoroughly by optical microscopy, electron probe microanalysis and wavelength dispersive spectrometry. Failure and cracking mechanisms of laser cladded coatings under normal and tangential loading were systematically investigated using scratch testing. In the nickel alloy matrix, fine mixed secondary carbides were formed due to partial dissolution and formation of the secondary tungsten carbide during laser cladding. These secondary carbides were rich in chromium, tungsten and nickel and had a blocky and/or bar-like shape. Failure mechanisms associated with scratch testing were dependent on the microstructure and carbide morphology, applied stress and location of carbide particles with regard to the scratch groove. Owing to the high binder mean free path between the carbide particles, plastic deformation of the binder was the dominant failure mechanism. Additionally, partial or whole fragmentation of carbides, carbide/binder interface cracking and limited binder fracture were observed.  相似文献   

10.
通过磨合试验,比较了超音速火焰(HVOF)喷涂碳化钨钴合金涂层与传统的含氰镀铬镀层与橡胶密封件对磨时的磨损情况.结果表明:HVOF喷涂碳化钨钴合金涂层具有良好的耐磨性和致密性,始终保持较良好的表面状况,对非金属密封件具有良好的适应性.  相似文献   

11.
The tribological behaviors of tungsten carbide (WC) based cermet/Ti3SiC2 tribo-pair at elevated temperatures were investigated. Lead oxide (PbO) was added as a solid lubricant. The tribo-physical and tribo-chemical changes on sliding surfaces were studied in detail. The results indicated that adhesive and abrasive wear due to removal of metallic binder and pullout of grains were the dominant wear mechanisms at room temperature. At high temperature, tribo-physical changes (i.e. mechanical mixture or sintering) and tribo-chemical reactions including complex reaction and oxidations were induced by frictional heat combined with high environmental temperature. As a result PbWO4 was formed as a reaction product and acted as a solid lubricant. PbWO4 and tribo-oxides along with the physically changed layer on the sliding surfaces were favorable to reduce wear of both materials. At high temperature, the wear mechanism varied from adhesive and abrasive wear at room temperature to lubrication by tribo-layer containing PbWO4, tribo-oxides, and sinters at high temperatures.  相似文献   

12.
钴基合金-碳化钨复合涂层材料耐磨性能的研究   总被引:1,自引:0,他引:1  
采用真空熔烧法制得钴基合金—碳化钨复合涂层材料,借助扫描电子显微镜、X射线衍射仪等先进的测试手段对涂层的组织结构和表面形貌进行观察分析。应用盘销式摩擦磨损试验机对不同碳化钨质量分数的复合涂层材料和淬火态45钢进行了磨损试验。结果表明:在相同试验条件下,复合涂层的耐磨性显著高于淬火钢,且其耐磨性随碳化钨质量分数的增加而提高:淬火钢的耐磨性随着载荷的增加迅速降低,而复合涂层的耐磨性则变化不大。  相似文献   

13.
The abrasion properties of a series of cemented carbides with different carbide grain sizes, different amounts and types of binder phases have been investigated under varied conditions. Abrasion results from other works are also incorporated for comparison reasons. The results are interpreted in the light of a previously published model for the abrasion properties of multiphase materials, although this is the first time this model is applied to materials with very high amounts of hardphase. It is confirmed that the abrasion resistance of tungsten carbide–cobalt materials may vary considerably, also for fixed amounts of metal and hardphase. Not only the wear resistance level but also the ranking depends both on the test conditions and on the microstructure. It is further showed that some nano-crystalline materials posses a wear resistance superior to those of the pure carbide material.  相似文献   

14.
分析了圆盘剪分切加工过程中圆盘刀的受力,利用硬质合金圆盘刀进行了硅钢片的分切加工试验,研究了硬质合金圆盘刀的磨损,对比分析了圆盘刀刃口磨损前后的表面形貌、微观结构和钴元素含量的变化,探讨了其磨损形式及机理。结果表明,硬质合金圆盘刀磨损主要在刃口两侧形成磨损带,随着磨损的发生,圆盘刀切削刃过渡圆弧半径增大、刃口变钝,刀具的磨损形式主要表现为WC硬质颗粒裸露脱落及材料的黏结撕裂,磨损机理主要为硬质合金黏结相钴元素的流失、疲劳磨损和黏结磨损。  相似文献   

15.
Abstract

Tungsten carbide (WC) is an extremely hard material which is used extensively in the manufacturing of tools and dies. In the presence of cobalt as a binder its machining becomes a difficult task because of interfacial bonding. In the EDM process, where electrical energy is used for the machining of the substance, the heat generated due to the plasma is responsible for removal of the substance at the interface. The heat generated is conducted differentially because of the composite structure of the tungsten carbide cermet. In order to improve the technological performance it is essential to understand the morphological features of tungsten carbide after machining. The studies have been conducted using different machining parameters. The objective of this study is to analyse the impact of machining parameters on the morphology of tungsten carbide suitable to withstand impact load on press forging for small components during operation. Experiments have been performed with the specially designed fixtures with proper flushing arrangements, to avoid arcing during the process. WC of P20 grade which is one of the most suitable grade substances to withstand load after EDM, has been used as work piece material for the entire study. Copper, graphite and copper tungsten electrodes have been used for the present study. The morphological features were studied with the help of the scanning electron microscope (SEM). It was observed that structural features varied with variation in electrode under similar experimental conditions. Phenomenon of such structures is discussed at length. The formations of cracks on WC have also been studied in detail. The detail of this study is presented in the paper.  相似文献   

16.
Lapping and electropolishing (EP) experiments for tungsten carbide blocks were executed. The effectiveness of the lapping experiment is evaluated in terms of the material removal rate, the surface roughness, and wear of the workpiece. The material removal rate describes the thickness removal of the workpiece under a fixed surface area. Wear describes a microscopic study of the wear track. The results show that the material removal and surface roughness increase as the grain size of the abrasive increases. Four main wear mechanisms -- abrasive wear, fracture, adhesive wear and scratch -- are observed during the lapping of tungsten carbide using silicon carbide abrasive. In the electropolishing experiment, four different machining characteristics -- sub-electropolishing, crack, electropolishing, and pitting -- can be analyzed as the applied current is increased. Although material removal is close to Faraday’s law during electropolishing, it disagrees with Faraday’s law after 400 s of sub-electropolishing.  相似文献   

17.
《Wear》1996,193(1):16-24
Wear surfaces of the cutting tools are analyzed to study the wear mechanism of cemented carbide tools in turning in Inconel 718 superalloys. SEM and EPMA analyses indicated that the wear of carbide tools during high speed turning condition (V = 35 m min−1) was caused by diffusion of elements (Ni or Fe) in workpiece into tool's binder (Co) by a grain boundary diffusion mechanism. This action weakened the bonding strength between carbide particles (WC, TiC, TaC) and the binder (Co). The carbide particles were then detached out of the cemented carbide tool by high flow stresses. The proposed grain boundary diffusion mechanism is also confirmed by theoretical analysis.  相似文献   

18.
This study attributed to post treatment of tungsten carbide (WC) inserts using microwave irradiation. Tungsten carbide inserts were subjected to microwave radiation (2.45 GHz) to enhance its performance in terms of reduction in tool wear rate, cutting force surface roughness and improvement in tool life. Performance of tungsten carbide insert is very much affected by machine operating parameters i.e. speed, feed and depth of cut. An attempt has been made to investigate the effects of machining parameters on microwave treated tool inserts. This paper describes the comparative study of machining performance of untreated and microwave treated WC tool inserts used for turning of AISI 1040 steel. Machining performance has been evaluated in terms of flank wear, cutting force, surface roughness, tool wear mechanisms. Critical examinations of tool wear mechanisms and improvements in metallurgical properties such as microstructural change, phase activation of WC grains were identified using scanning electron microscope (SEM). Results obtained from the turning using the microwave treated tool inserts showed a significant reduction tool wear thereby enhancing the surface quality of workpiece.  相似文献   

19.
Influence of current impulse on machining characteristics in EDM   总被引:1,自引:0,他引:1  
Electrical discharge machining (EDM) is a machining process transforming electric energy into thermal energy to remove materials. The current impulse is a very important factor for machining characteristics of EDM. A series of experiments were performed to investigate the influence of current impulse on machining characteristics. The features of current impulse have initial current, current rising slope and impulse pattern. The used patterns of current impulse included rectangular current impulse, trapezoidal current impulse and the 1st order current impulse. The machining characteristics are associated with relative wear ratio (RWR) and material removal rate (MRR). Experimental showed that using trapezoidal current impulse with small initial current or little current rising slope reduced relative wear ratio and material removal rate as well. However, larger relative wear ratio was obtained for workpiece of tungsten carbide when current rising slope was too little. Using the 1st order current impulse with 20 μs current rising time can improve relative wear ratio about 30 % while remain material removal rate the same as rectangular current impulse for tungsten carbide.  相似文献   

20.
During high-speed machining Ti-6Al-4V alloy, high-temperature at the tool–chip interface and the concentration gradient of chemical species between tool material and workpiece material support the activation of diffusion process, and therefore the crater wear forms on the rake surface of the cutting tool at a short distance from the cutting edge. In this paper, the diffusion analysis was theoretically proposed. The constituent diffusion at the contact interface between tool material and Ti-6Al-4V alloy at high-temperature environment, the crater wear on the rake surface of the tool, and the chips collected from high-speed milling Ti-6Al-4V alloy with straight tungsten carbide tools were analyzed by the scanning electron microscope with energy dispersive X-ray spectroscopy. The constituents inside the tool could diffuse into the workpiece and the diffusion layer was very thin and close to the interface. Compared with the diffusion of tungsten and carbon atoms, the pulling out and removing of the tungsten carbide (WC) particles due to cobalt diffusion dominated the crater wear mechanism on the rake surface of the cutting tool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号