首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 556 毫秒
1.
A mixed finite-difference scheme is presented for the stress and free vibration analysis of simply supported nonhomogeneous and layered orthotropic thick plates. The analytical formulation is based on the linear, three-dimensional theory of orthotropic elasticity and a Fourier approach is used to reduce the governing equations to six first-order ordinary differential equations in the thickness coordinate. The governing equations possess a symmetric coefficient matrix and are free of derivatives of the elastic characteristics of the plate. In the finite difference discretization two interlacing grids are used for the different fundamental unknowns in such a way as to reduce both the local discretization error and the bandwidth of the resulting finite-difference field equations. Numerical studies are presented for the effects of reducing the interior and boundary discretization errors and of mesh refinement on the accuracy and convergence of solutions. It is shown that the proposed scheme, in addition to a number of other advantages, leads to highly accurate results, even when a small number of finite difference intervals is used.  相似文献   

2.
《Computers & Structures》1986,22(4):677-686
This paper deals with the large-amplitude axisymmetric free vibrations of cylindrically orthotropic thin circular plates of varying thicknesses with edge elastically restrained against rotation and in-plane displacement. Geometric nonlinearity due to moderately large deflections is included. Linear, parabolic and cubic variations of thickness are considered. Harmonic vibrations are assumed and time is eliminated from the von Kármán-type governing equations by the Kantorovich averaging method. The orthogonal point collocation method is used for spatial discretisation. Results are presented for the linear frequency of first axisymmetric mode and for the amplitude-period response. The effect of taper ratio, orthotropic parameter and rotational and in-plane stiffness of the support on the nonlinear vibration behaviour is investigated.  相似文献   

3.
The vibration and stability analysis of polar orthotropic circular plates using the finite element method is discussed. In order to formulate the eigenvalue problems associated with the vibration and stability analyses, the clement stiffness, mass, and stability coefficient matrices are presented. By assuming the static displacement function, which is an exact solution of the polar orthotropic circular plate equation, approximates the vibration and buckling modes, the mass and stability coefficient matrices are readily derived from the given displacement function. Results showing the effects of orthotropy on natural frequencies and buckling loads are compared with their isotropic counterpart.  相似文献   

4.
We consider discretization of the planar convection of the incompressible fluid in a porous medium filling rectangular enclosure. This problem belongs to the class of cosymmetric systems and admits an existence of a continuous family of steady states in the phase space. Mimetic finite-difference schemes for the primitive variables equation are developed. The connection of a derived staggered discretization with a finite-difference approach based on the stream function and temperature equations is established. Computations of continuous cosymmetric families of steady states are presented for the case of uniform and nonuniform grids.  相似文献   

5.
The paper is dedicated to the development and application of the 3D shallow water hydrodynamics model. Parallel realization of the deepest descent the symmetric successive over relaxation (SSOR) algorithm is presented for solving finite-difference equations obtained after discretization of the initial problem. Estimates for speeding up and increasing the efficiency of the parallel algorithm are given, and the flow velocity distribution for the Azov Sea (South of Russia) and the Lagoon Etang de Berre (South of France) are presented.  相似文献   

6.
In this paper, the elastic constants of a material are recovered from measured displacements where the model is the equilibrium equations for the orthotropic case. The finite element method is used for the discretization of the state equation and the Gauss–Newton method is used to solve the nonlinear least squares problem attained from the parameter estimation problem. A posteriori error estimators are derived and used to improve the accuracy by an appropriate mesh refinement. A numerical experiment is presented to show the applicability of the approach.  相似文献   

7.
The incompressible time independent Navier-Stokes equations for two-dimensional laminar flow through arrays of parallel circular cylinders are solved numerically. A square mesh in the physical field is used to effect a finite difference iterative procedure for solving the elliptic type partial differential equations. Results which exhibit the main characteristics of this type of fluid flow are given for certain regular arrays at cylinder Reynolds numbers of 1 and 20.  相似文献   

8.
This study deals with the nonlinear axisymmetric static analysis of elastic orthotropic thin circular plates with elastically restrained edges for rotation as well as in-plane displacement. Von-Karman equations have been employed and spatial discretisation has been done by using the method of orthogonal point collocation. Numerical results have been presented for orthotropic plates with hinged edge, simply supported edge, movable clamped edge and immovable clamped edge. Results are given for the whole range of elastic edge restraints from the movable simply supported edge to the immovable clamped edge. The effect of a prescribed inplane force or an inplane displacement at the edge, on the static response under a uniformly distributed transverse load has been investigated. Several new results are presented. The present results are in good agreement with the available results.  相似文献   

9.
In this paper, a mathematical model capable of handling a three-dimensional (3D) flexible n-degree of freedom manipulator having both revolute and prismatic joints is considered. This model is used to study the longitudinal, transversal, and torsional vibration characteristics of the robot manipulator and obtain kinematic and dynamic equations of motion. The presence of prismatic joints makes the mathematical derivation complex. In this paper, for the first time, prismatic joints as well as revolute joints have been considered in the structure of a 3D flexible n-degree of freedom manipulator. The kinematic and dynamic equations of motion representing longitudinal, transversal, and torsional vibration characteristics have been solved in parametric form with no discretization. In this investigation, in order to obtain an analytical solution of the vibrational equations, a novel approach is presented using the perturbation method. By solving the equations of motion, it is shown that mode shapes of the link with prismatic joints can be modeled as the equivalent clamped beam at each time instant. As an example, this method is applied to a three degrees of freedom robot with revolute and prismatic joints. The obtained equations are solved using the perturbation method and the results are used to simulate vibrational behavior of the manipulator.  相似文献   

10.
《Computers & Structures》1986,22(4):709-724
Differential equations representing the equilibrium of circular plates subjected to symmetric lateral loading are presented in which both bending and membrane forces are taken into account. Three types of edge conditions are considered together with uniform, disc and ring loading conditions. The equations are solved numerically using a finite-difference technique. As deflections increase, it is shown how the solutions tend to those given by the membrane problem in which bending effects are ignored. The general membrane problem is also treated numerically and a series solution developed for the uniformly loaded case.  相似文献   

11.
An efficient computational procedure is presented for the free vibration analysis of laminated anisotropic shells of revolution, and for assessing the sensitivity of their response to anisotropic (nonorthotropic) material coefficients. The analytical formulation is based on a form of the Sanders-Budiansky shell theory including the effects of both the transverse shear deformation and the laminated anisotropic material response. The fundamental unknowns consist of the eight stress resultants, the eight strain components, and the five generalized displacements of the shell. Each of the shell variables is expressed in terms of trigonometric functions in the circumferential coordinate and a three-field mixed finite element model is used for the discretization in the meridional direction.The three key elements of the procedure are: (a) use of three-field mixed finite element models in the meridional direction with discontinuous stress resultants and strain components at the element interfaces, thereby allowing the elimination of the stress resultants and strain components on the element level; (b) operator splitting, or decomposition of the material stiffness matrix of the shell into the sum of an orthotropic and nonorthotropic (anisotropic) parts, thereby uncoupling the governing finite element equations corresponding to the symmetric and antisymmetric vibrations for each Fourier harmonic; and (c) application of a reduction method through the successive use of the finite element method and the classical Bubnov-Galerkin technique.The potential of the proposed procedure is discussed and numerical results are presented to demonstrate its effectiveness.  相似文献   

12.
A high-accuracy numerical approach is introduced for three-dimensional, time-dependent simulations of variable density and viscosity, miscible flows in a circular tube. Towards this end, the conservation equations are treated in cylindrical coordinates. The spatial discretization is based on a mixed spectral element/Fourier spectral scheme, with careful treatment of the singularity at the axis. For the temporal discretization, an efficient semi-implicit method is applied to the variable viscosity momentum equation. This approach results in a constant coefficient Helmholtz equation, which is solved by a fast diagonalization method. Numerical validation data are presented, and simulations are conducted for the three-dimensionally evolving instability resulting from an unstable density stratification in a vertical tube. Some preliminary comparisons with corresponding experiments are undertaken.  相似文献   

13.
《Computers & Fluids》1999,28(4-5):443-480
A continuous adjoint approach for obtaining sensitivity derivatives on unstructured grids is developed and analyzed. The derivation of the costate equations is presented, and a second-order accurate discretization method is described. The relationship between the continuous formulation and a discrete formulation is explored for inviscid, as well as for viscous flow. Several limitations in a strict adherence to the continuous approach are uncovered, and an approach that circumvents these difficulties is presented. The issue of grid sensitivities, which do not arise naturally in the continuous formulation, is investigated and is observed to be of importance when dealing with geometric singularities. A method is described for modifying inviscid and viscous meshes during the design cycle to accommodate changes in the surface shape. The accuracy of the sensitivity derivatives is established by comparing with finite-difference gradients and several design examples are presented.  相似文献   

14.
Nonlinear axisymmetric static and dynamic buckling of clamped isotropic and cylindrically orthotropic elastic cap with central circular hole have been investigated. The governing equations are expressed in terms of normal displacement ω and stress function ψ. The orthogonal point collocation method has been used in the space domain and Newmark-β scheme in the time domain. The cases of shallow cap with free hole and with a hole plugged by rigid central mass are considered. Analysis has been carried out for uniformly distributed load and a ring load at the hole. Dynamic load is taken as a step function load. Detailed new results for static and dynamic buckling loads have been presented for the isotropic and orthotropic cases.  相似文献   

15.
《Computers & Structures》1986,22(3):335-342
This investigation deals with the axisymmetric static and dynamic buckling of a cylindricaliy orthotropic truncated shallow conical cap with clamped edge. The cases of conical caps with a free central circular hole and with a hole plugged by a rigid central mass have been considered. The governing equations are formulated in terms of normal displacement w and stress function Ψ. The orthogonal point collection method is used for spatial discretisation and the Newmark-β scheme is used for time-marching. Analysis has been carried out for a uniformly distributed conservative load normal to the undeformed surface and a central axial ring load at the hole. Dynamic load is taken as a step function load. The influence of orthotropic parameter β and annular ratio on the buckling loads has been investigated. New results for static and dynamic buckling loads have been presented for the isotropic and orthotropic truncated conical caps. Dynamic buckling loads obtained from static analysis have been found to agree well with the dynamic buckling loads based on transient response.  相似文献   

16.
Flow-induced forces on two nearby circular cylinders of equal diameter immersed in the cross flow at Re = 100 were numerically studied. We consider all possible arrangements of the two circular cylinders in terms of the distance between the two cylinders and the inclination angle of the line connecting the cylinder centers with respect to the direction of the main flow. It turns out that significant changes in the characteristics of flow-induced forces are noticed depending on how the two circular cylinders are positioned, resulting in quantitative changes of force coefficients on both cylinders. Collecting all the numerical results obtained, we propose contour diagrams for mean force coefficients and rms values of force coefficient fluctuations for each of the two cylinders. The perfect geometrical symmetry implied in the flow configuration allows one to use those diagrams to estimate flow-induced forces on two circular cylinders of equal diameter arbitrarily positioned in physical space with respect to the main flow direction.  相似文献   

17.
An outline of the incremental equations governing the elasto-plastic large deflection response of circular plates with initial deflections is presented. A few comments on their numerical solution using a finite-difference implementation of the Dynamic Relaxation (DR) method are also included. The numerical analysis is used to undertake a parameter study of the full-range response of imperfect plates and encompasses the effects of edge support condition and plate slenderness as well as imperfection amplitude. The numerical results for deflections, etc. are presented in dimensionless graphical format. Apart from demonstrating the effects of imperfections, which are significant in the elastic and initial elasto-plastic regimes, the results are of potential application for preliminary design.  相似文献   

18.
A finite-difference formulation that gives accurate bending moments for thin elastic plates is presented. The biharmonic equation is replaced with two deflection-normal bending moment relations and the equilibrium equation in terms of the moments. Isotropic as well as orthotropic rectangular plates under various loadings and edge conditions are analyzed to demonstrate the accuracy of the present formulation.  相似文献   

19.
《Computers & Fluids》2002,31(4-7):663-682
This paper deals with meniscus deformation and flow in an isothermal liquid bridge maintained between two circular rods, when one rod is subject to axial monochromatic vibrations. It concerns a fundamental aspect of the problem of crystal growth from melt by the floating-zone technique which is often considered in weightlessness conditions. In the absence of vibrations the bridge is cylindrical; but due to vibration the mean shape of the meniscus is no more cylindrical and the meniscus oscillates around this mean shape. Two models are developed. First, we take into account the pulsating deformations of the meniscus (free surface), but we assume that the mean shape of meniscus remains cylindrical (i.e., we neglect the influence of vibration on this mean shape). For this simple case, a solution of the problem for the pulsating meniscus deformations and the pulsating velocity field is found in explicit form. For the mean flow, the problem is solved numerically by a finite-difference method. The calculations demonstrate the contribution of two basic mechanisms of mean flow generation due to vibrations, related to the generation of mean vorticity in the viscous boundary layer near the rigid boundaries and surface-wave propagation at a free surface. The intensity of the mean flow induced by surface waves is found to be sharply increasing when the vibration frequency approaches the resonance values that are determined from the explicit form of the solution of pulsation problem. In the second model, we take into account both pulsating and mean deformations of the meniscus. The governing equations for the potential of pulsating velocity and mean velocity, and for the pressure, are solved by using a finite-difference method and a boundary-fitted curvilinear coordinate system fitting the free surface.  相似文献   

20.
In this paper, nonlinear behaviours for a shallow unsymmetrical, orthotropic sandwich shell of double curvature with orthotropic core having different elastic characteristics have been studied by a new set of uncoupled differential equations. The face sheet may be of unequal thickness of different materials. However, a restriction that the elements radii of curvature be large compared to the overall thickness of the sandwich has been imposed.

A simple approach used in the present analysis can be applied for stability as well as vibration. For the symmetrical case, where the face sheets are of equal thickness and of same materials, these equations can be shown to reduce to those given by Grigolyuk in 1957. Numerical results of a square rectangular simply supported curved plate, and of a rectangular sandwich cylindrical shell under mechanical and dynamic loading, have been computed and compared with other known results.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号