首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Effect of surface topography modifications on lubrication film thickness within non-conformal lubricated contact operated under transient speed conditions is observed. Optical test rig is used to observe the lubricant film behaviour between the flat surface of a chromium coated glass disc and a steel ball under simplified operational conditions modelling the cam and tappet contact. Numerical simulation was used to be able to choose the operating conditions suitable for experiments. An array of micro-dents was produced on the ball surface to be able to demonstrate the effect of surface topography on lubrication film formation. Experiments were carried out under elastohydrodynamic lubrication conditions. Obtained results have shown that surface texturing could represent the way how to increase lubrication efficiency of rolling/sliding non-conformal contacts under transient operational conditions through the lubricant emitted from micro-dents. It was found that the lubricant emitted from the micro-dents helps to separate rubbing surfaces especially under thin film lubrication conditions where the rubbing surfaces moves in the opposite direction.  相似文献   

2.
Rolling contact fatigue performance of detonation gun coated elements   总被引:3,自引:0,他引:3  
Rolling contact fatigue performance of thermal spray coatings has been investigated using an experimental approach. A modified four ball machine which simulates a rolling element bearing was used to examine the coating performance and failure modes in a conventional steel ball bearing and hybrid ceramic bearing configurations. Tungsten carbide (WC-15% Co) and aluminium oxide (Al2O3) were thermally sprayed using a super D-Gun (SDG2040) on M-50 bearing steel substrate in the geometrical shape of a cone. A coated cone replaced the upper ball that contacts with three lower balls. The rolling contact fatigue (RCF) tests were performed under immersed lubricated conditions using two different lubricants. Fatigue failure modes were observed using a scanning electron microscope. Microhardness measurements of the coating and the substrate and elastohydrodynamic fluid film thickness results are included. The results show the requirement for significant optimization of the coating before use in rolling element bearing applications. The coating was fractured in a delamination mode. Test results show an optimization in coating process is required before these coatings can be used for rolling contact applications. WC-Co coatings perform better than Al2O3 coatings in rolling contact.  相似文献   

3.
Ring crack propagation in silicon nitride under rolling contact   总被引:3,自引:0,他引:3  
Y. Wang  M. Hadfield 《Wear》2001,250(1-12):282-292
Silicon nitride has been found to have the optimum combination of properties which are suitable for rolling element bearing applications to withstand high loads, severe environments, and high speeds. Surface ring cracks are difficult to detect but are found on the surface of silicon nitride balls. These ring crack defects decrease the rolling contact fatigue life considerably. This paper presents an experimental study and numerical analysis of ring crack propagation in rolling contact. The contribution of this study is to provide understanding of ring crack propagation behaviour and life prediction in rolling contact. Rolling contact tests are performed on the silicon nitride/steel elements. Silicon nitride ball surfaces are examined before testing using a dye-penetrant technique and optical microscopy. The surfaces are examined using optical microscopy and scanning electron microscopy during testing and after failure. The numerical calculations are based on a 3D model of ring crack growth. The rolling contact loading is simulated by a repeated Hertzian surface load with normal pressure and tangential traction. Fracture mechanics analysis is utilised to determine the stress intensity along the crack front and the stress intensity factors are analysed using a 3D boundary element model. Life predictions from the present calculations are in line with the experimental observations.  相似文献   

4.
Wear of steel (AISI M-50 and AISI 52100) bearing balls in lubricated rolling contact with ground and ground-and-lapped silicon nitride rods was studied using a ball-on-rod rolling-contact-fatigue (RCF) tester. The steel balls suffered significant wear in rolling contact with the as-ground (Ra = 0.18 μm) silicon nitride rods. The wear volume loss was approximately linear with the rolling distance. The wear rate increased linearly with the initial Hertzian contact stress in the range, 3–6.5 GPa. Examination of the wear tracks in a scanning electron microscope revealed surface features that suggested a wear mechanism that involved plastic deformation of the steel surface, squeezing of the metal symmetrically outward and rupture of the metal layers at the edges. The steel balls suffered negligible wear but failed by spalling in rolling contact with the ground-and-lapped silicon nitride rods (Ra = 0.08 μm) at an initial contact stress of 5.5 GPa. The as-ground silicon nitride rods exhibited neither wear nor spalling in the RCF tests, while the ground-and-lapped silicon nitride rods showed no wear but occasional spalling failure.  相似文献   

5.
基于滚动接触蠕滑理论将球轴承滚动体与滚道的接触问题分解为法向赫兹接触子问题和切向粘滑子问题,提出了基于滚动接触蠕滑理论的球轴承摩擦力矩计算方法,揭示了球轴承滚动体相对内外滚道的滚滑粘着运动特性,解决了球轴承滚动体运动姿态难以确定的问题,为固体润滑/干接触条件下球轴承摩擦力矩的准确计算提供了理论依据。在轴向载荷作用下对采用PTFE保持架全陶瓷Si3N4/GCr15/不锈钢球轴承进行摩擦力矩试验,试验结果与计算结果对比表明,球轴承蠕滑分析模型能够得到比较准确的摩擦力矩计算结果,比不考虑滚动接触区粘滑效应的切片离散化模型更准确。  相似文献   

6.
Friction and vibration behaviors of lubricated concentrated point contacts with surface texturing have been experimentally investigated under reciprocating motions. Ground, lapped and textured lapped flat surfaces are tested against polished ball surfaces. Coefficient of friction, surface temperature, electrical resistance and vibrations at the lubricated contacts have been measured and analyzed. In the presence of surface texture, the coefficient of friction reduces by 30% in some of the cases. Surface temperature distributions on reciprocating tracks have also been measured and compared. Vibrations associated with lubricated point contacts formed between textured surfaces/balls reduce significantly at resonance frequency in comparison to polished surfaces/balls.  相似文献   

7.
L. Gu  L. Wang  Y. Jin  X. Li 《摩擦学汇刊》2013,56(4):494-498
Hybrid ceramic ball bearings, which are composed of silicon nitride (Si3N4) balls, ANSI 440C stainless steel rings and PTFE based composite retainers, are tested at high speed and heavy loading in cryogenic conditions. The rolling contact fatigue behavior of steel rings and ceramic balls in liquid nitrogen is analyzed. In addition, four-ball fatigue testing was done at room temperature with oil lubrication. The crush load of ball against ball in liquid nitrogen, which directly relates to the inner quality of the balls, is also evaluated. The results show that the spalling of silicon nitride balls, rather than micro pitting on the steel raceways, is the main cause for the failure of the hybrid ball bearings in liquid nitrogen. The fatigue mechanism of the ceramic balls is similar to that of ceramic balls at room temperature, but the characteristics of crack propagation are different because of differences between the cryogenic liquid medium and oil. Although most of the fatigue cracks originated from internal defects within the ceramic balls, the silicon nitride balls exhibit a high load capacity. When silicon nitride balls are loaded against steel balls, the steel balls are crushed while the silicon nitride balls do not exhibit plastic deformation. When ceramic balls with a 11.113 mm diameter are loaded against each other, crushing takes place at a nominal contact stress of 27~29 GPa.  相似文献   

8.
A.D. Roberts  A.G. Thomas 《Wear》1975,33(1):45-64
In an earlier study of adhesion between smooth rubber and rigid surfaces time effects were apparent. It now appears that under non-equilibrium conditions these effects largely determine the magnitude of the force required to separate adhering surfaces. This paper presents an optical study of contact area time effects between such surfaces and shows in a simple way how these optical observations may be used to predict the rate of rolling of a ball bearing on smooth rubber, the time taken to detach itself under gravity and its resilience when bouncing on smooth rubber. The friction when a rigid surface slides over smooth rubber under conditions where Schallamach waves are generated is also shown to be quantitatively related to their mutual adhesion.  相似文献   

9.
Pitting, a form of rolling contact fatigue, is a complex phenomenon and several factors influence its occurrence, particularly under lubricated conditions. In this work, studies have been conducted to observe the events that occur during lubricated rolling four‐ball tests that may affect or eventually lead to the formation of pits. This is performed to form an understanding of the pit formation process. Included is tribofilm formation, surface degradation, wear mode, material changes and crack initiation sites. These investigations have been performed on the ball samples from rolling four‐ball tests, conducted using two API GL‐5 gear oils. The analyses revealed the formation of a low hardness region beneath the surface of the running track due to martensite decay. The formation rate and expansion of this region was found to differ for the two lubricating oils. The pitted balls also indicated that the initial fatigue cracks were initiated at or close to the surface. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
The aim of the present investigation was to obtain some further understanding of the mechanism responsible for low-friction behaviour of W-containing DLC coatings (W-DLC) when lubricated with EP additivated oil. Boundary lubricated wear and friction tests were performed under reciprocating sliding motion using a high frequency test rig and a contact pressure of 1.5 GPa. Additionally, some of the tests were performed in a load-scanning reciprocating test rig, with the contact pressure being in the range from 2.4 to 5.6 GPa. The influence of concentration of a sulphur-based EP additive on the friction behaviour was investigated.This investigation showed that W-DLC coatings greatly improve the tribological properties of boundary-lubricated surfaces, especially when pairing coated and uncoated steel surfaces. The improved tribological behaviour was found to be governed by the gradual formation of a WS2 type tribofilm on the steel counter-face or on revealed steel substrate. The friction level depends on the additive concentration.  相似文献   

11.
The behaviour of thin viscous boundary films in the rough surface rolling–sliding point contact operated under thin film lubrication conditions have been observed by thin film colorimetric interferometry. Changes in film thickness distribution within the lubricated contact between steel ball and glass disc were studies with both mineral base oil and mineral oil formulated with non-functionalized polyalkylmethacrylate (PAMA). Recent studies by other researchers showed that this polymer-containing viscosity index improver exhibits some friction-reducing capabilities even though it forms only very thin boundary films on rubbing surfaces. Results obtained in the current study proved that thin viscous boundary films formed on rubbing surfaces can reduce asperities interactions of rubbing surfaces under very thin film conditions. Even though these boundary films do not separate rubbing surfaces completely, they still can provide some protection of contacting bodies against excessive friction and wear.  相似文献   

12.
The dynamics of MoS2 particles in a mineral oil dispersion are studied in the same manner as reported in Part I for graphite dispersions. A Hertzian contact consisting of a steel ball in contact with a glass disk is lubricated with MoS2 dispersions and observed by optical microscopy at various. slide/roll conditions. In general, the behavior of MoS2 and graphite are similar. That is, the solids lend to enter the contact and form a film on the contacting surfaces whenever a rolling component of motion is used, but solid particles seldom enter the contact during pure sliding. MoS2 has more pronounced plastic flow behavior than graphite. However, the polished steel ball is more readily scratched by MoS2 than by graphite. Under the conditions of these studies, lower friction and wear are observed with pure oil rather than with the dispersions. However, under other conditions (such as different contact geometry or rougher surfaces), the solid-lubricant dispersions might be beneficial.  相似文献   

13.
The tribological behaviour of oil‐lubricated steel‐alumina sliding pairs was investigated using a ball‐on‐disc tribometer at room temperature. Commercial bearing balls of 10 mm diameter were mated to 99.7% Al2O3 discs, and additive‐free mineral oil was fed into the contact area. The sliding speed and the applied normal load were varied, and the initial surface roughness of the Al2O3 disc was altered using different polishing and grinding procedures. The results showed that the surface roughness of the ceramic discs dominated the tribological behaviour under the given experimental conditions. The sliding speed as well as the normal load showed less effect on the friction behaviour, but the amount of wear depended strongly on the normal load. From the results it was concluded that improvement of the surface roughness and optimised surface machining of the ceramic material can be essential for improving the tribological performance for boundary‐lubricated steel‐ceramic sliding pairs.  相似文献   

14.
15.
Zinc dialkyldithiophosphates (ZDDP) cannot be used as additives in biodegradable lubricants because of their zinc content. In investigating substitutes for ZDDP, dialkyldithiophosphate esters have been synthesised, and their tribological behaviour as additives in rape seed oil has been evaluated using a four‐ball friction and wear tester and compared with that of ZDDP. The results show that these additives have better antiwear properties and load‐carrying capacity than rape seed oil alone. The morphologies and the elemental chemical states on the worn surfaces of the lubricated steel balls of the tester were examined using X‐ray photoelectron spectroscopy and scanning electron microscopy. The tribological mechanism is discussed on the basis of the experimental results.  相似文献   

16.
The effects of steel and ceramic rolling elements on protrusions from the raceway of a bearing were experimentally investigated. Such protrusions, which are normally caused by solid contaminants in the lubricating oil, create stress concentrations and lead to a reduction in the rolling contact fatigue life of the bearing. To compare the over-rolling effects of steel and ceramic rollers, experiments with steel discs with artificial dents on the surfaces were performed using a modified twin-disc machine. The results show that ceramic rollers can reduce the height of the protruded edge of an artificial dent more than steel rollers, which means that they are more effective in smoothing a damaged surface. The stresses at the contact were calculated by finite element analysis based on the deformed profile of the dented surface. The reduction in the stress level due to the smoothing effect of ceramic rollers is greater than that of steel rollers. According to the Lundberg–Palmgren bearing fatigue model, that smoothing ensures a significantly longer rolling contact fatigue life for a bearing. To put the idea into practice, a rolling ball bearing with two of its nine steel balls replaced with silicon nitride balls (referred to as a “partial hybrid bearing”) was run, together with a full steel bearing of the same model, on a bearing tester in a highly contaminated lubrication condition. The results show that the partial hybrid bearing suffers from less damage in terms of wear. The post-experiment examination of the damaged surface of the bearing raceway found that the surface of the partial hybrid bearing was smoother than that of the full steel bearing. This reveals the smoothing effect of the rolling ceramic element on the contaminant-damaged bearing surface.  相似文献   

17.
Abstract

Silicon nitride as an energy efficient material is replacing conventional steels for new generation engineering components such as bearings, cutting tools, electronics and engine parts in automotive, aerospace and wind industries. Compared with steel bearings, silicon nitride bearings can be operated at much higher temperatures and speeds with >60% weight reduction and up to 80% friction reduction. These are all due to its unique material properties, including high wear and corrosion resistance, low density and heat generation. Current lubrication solutions for hybrid contacts, where silicon nitride balls and steel races are used, are mostly relying on the protection film formed on the metal surfaces. Self-assembled monolayers (SAMs) have been found very useful in modifying surfaces, especially for microelectromechanical system and nanoscale applications, e.g. atomic force microscopy tips, etc. This study aims to investigate the feasibility of forming a SAM protection film on industrial grade bearing material silicon nitride to reduce the friction for the oil lubricated hybrid contacts. Four silanes with different functional head groups, including octadecyltrichlorosilane (OTS), octyltrichlorosilane, chlorodimethyloctadecylsilane and octadecyltrimethoxysilane, were initially investigated to form SAMs on industrial grade silicon nitride surfaces. The effects of concentration and immersion time of the silanes on the formation of SAMs on the silicon nitride surface were evaluated using contact angle measurements. The preliminary results show that the wetting properties of the silicon nitride surface can be effectively modified by the formation of SAMs from the silane solutions. OTS can form an order and compact SAM on the silicon nitride surfaces within 2 min at the concentration of 2··5 mM in decane solution, while the other three alkylsilanes can also effectively modify silicon nitride surfaces given sufficient immersion time, e.g. over 1 h. Tribological tests were subsequently carried out on a ball on disc rig where a steel ball and a silicon nitride disc were used. The effect of the formation of alkylsilane SAMs on the friction between the sliding contacts has been evaluated in two different methods. The first method was to test preformed SAM films under dry conditions, and the second was to premix one of the surfactants with Shell Vitrea ISO 32 mineral base oil and then spray the mixture to the contacts during the ball on disc testing. The test results show that an average of over 40 and 30% friction reduction was achieved for the hybrid contact when lubricated with the base oil mixed with OTS (>2··5 mM) and octadecyltrimethoxysilane (5 mM) respectively compared with that of the sliding contact lubricated by the base oil only. Since OTS may produce corrosive byproducts during SAM formation, octadecyltrimethoxysilane may be a more suitable additive for the hybrid contacts.  相似文献   

18.
The fretting wear behaviour of PMMA against a rigid counterface has been investigated under various contact zone kinematic conditions. A specific device has been used in order to achieve load axis spin or stationary rolling motions in a contact between a PMMA flat and a steel ball. Wear processes under such conditions have been investigated by means of laser profilometry and in-situ optical observations of the contact area during tests. Very different wear patterns were produced depending on the contact kinematics. For stationary rolling conditions, the progressive accumulation and compaction of debris induced the formation of a single ripple located in the middle of the contact. Very little debris was found to be eliminated from the contact and the resulting wear was quite low. On the other hand, little accumulation of debris was observed for torsional contact conditions and the wear was drastically enhanced. These results are analysed by considering the effects of contact zone kinematics on particle detachment and third body elimination.  相似文献   

19.
The effect of surface structure on the friction and lubrication properties of a model tribological system representing the tongue/palate contact was investigated under dry conditions and in the presence of oil and aqueous solution having the same viscosity at mouth temperature. To this end, several soft silicone surfaces with well-defined surface structures, based on hemisphere pillars of different dimensions in the sub-millimetre range, were fabricated by a moulding technique in order to cover the different scales roughness of the human tongue. The friction experiments were performed on a reciprocating motion sliding tribometer involving contact between a relatively hard ball (steel or PCTFE) representing the palate and one of the soft silicone surfaces simulating the tongue. Test conditions were designed to represent those encountered in the mouth when thin films of food residues coat the oral mucosa surfaces. The results show that the frictional behaviour of the investigated model tribosystem is strongly affected by the topographical structure of the contacting surfaces. Under dry conditions, the coefficient of friction decreases significantly with increase of hemispherical pillar density. For lubricated surfaces, higher pillars with an optimal high density increase the friction coefficient. Further, it was observed that a minimal wetting of at least one contacting surface is essential for establishing effective lubrication.  相似文献   

20.
直线滚动导轨中钢球的运动是很复杂的,一般情况下,滚动体绕自身轴线转动,同时又绕反向器沟道轴线公转.在滚动的同时,滚动体沿滚道还伴随有一定的滑动.通常直线滚动导轨中钢球的运动是三维的,若接触角不等于零.钢球会有绕垂直于接触面的滑动,成为自旋滑动.高速运转时,钢球还可能有因陀螺力矩而产生的运动.直线滚动导轨的结构参数,工作条件,润滑状况以及制造精度都会影响其内部的运动学关系.综合考虑结构参数以及润滑状况对直线滚动导轨运动的影响,对反向器的回珠曲线进行多目标函数的优化设计,使得钢球能从受载区向非受载区平稳过渡.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号