首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
王磊 《现代矿业》2022,(11):248-250+254
针对王庄煤矿综放工作面瓦斯涌出量大、上隅角瓦斯积聚的情况,提出采用高位大直径定向钻孔技术治理采空区和上隅角瓦斯超限问题。通过研究采空裂隙随工作面推进的演化过程,分析顶板裂隙发育高度,确定大直径高位定向长钻孔最佳布孔层位及钻孔结构,并进行工程实践。结果表明,在高瓦斯工作面通过布设大直径高位定向长钻孔,初始时钻孔瓦斯浓度相对较高,但随工作面的不断推进,钻孔抽采瓦斯浓度开始下降,且大直径高位定向长钻孔抽采上隅角瓦斯持续时间长,抽采瓦斯纯量稳定,钻孔抽采期间平均纯量为4.3 m3/min,钻孔平均抽采浓度为11.1%,有效解决了上隅角瓦斯超限问题,保障工作面的安全回采。  相似文献   

2.
郑文贤 《中国矿业》2021,30(9):145-149
为解决回采工作面上隅角瓦斯超限问题,提出大直径钻孔"以孔代巷"上隅角瓦斯抽采技术,应用数值模拟方法,对大直径钻孔参数进行了优化,确定了最优孔径、孔距和终孔位置。大直径钻孔"以孔代巷"上隅角瓦斯抽采技术在西曲矿18401工作面现场应用效果表明:大直径钻孔间距为5 m、孔径为350mm及钻孔终孔位置至顶板距离为0.3m时,上隅角瓦斯浓度降至最低,抽采效果最佳;与施工高抽巷抽采进行瓦斯抽采相比,大直径钻孔"以孔代巷"上隅角瓦斯抽采技术施工难度低速度快,成本降低85.79%;工作面回采过程中,上隅角瓦斯浓度均保持在0.2%以下,有效解决了采煤工作面上隅角瓦斯易于集聚的难题,保障了工作面的安全生产。  相似文献   

3.
晋煤集团寺河矿是罕见的高瓦斯矿井,为进一步降低工作面回风瓦斯,设计在W1305工作面进行顶板高位大直径定向钻孔抽采采空区瓦斯技术应用实验,通过理论分析、现场实体检测等方法表明,顶板高位大直径定向钻孔平面上距离巷道15~60 m较合理;剖面上距离煤层顶板30~45 m,钻孔瓦斯抽采浓度较大;其介入瓦斯抽采前回风巷上隅角各采集点的瓦斯浓度较高,最高达到0.65%,高位钻孔介入抽采后下降至0.4%,工作面瓦斯治理效果显著。  相似文献   

4.
为解决青龙煤矿11615回采工作面上隅角瓦斯浓度超限难题,结合该工作面实际瓦斯赋存情况,采用高位定向长钻孔瓦斯抽采技术方法开展瓦斯抽采。对比了瓦斯抽采效果与钻孔距回风巷距离远近的关系,研究了瓦斯抽采效果与回采里程的关系,总结了高位定向长钻孔的瓦斯抽采规律。研究结果表明:回采过程中,通过高位定向长钻孔抽采采空区上覆岩层瓦斯,回采工作面上隅角瓦斯浓度降低到0.25%~0.35%,解决了该采空区上隅角瓦斯浓度超限问题;钻孔距回风巷距离为40m时,抽采瓦斯浓度基本稳定在18.5%左右,抽采效果最佳;随着回采里程的增加,钻孔抽采效果呈上升趋势,但在抽采末期有所下降。说明高位定向长钻孔对降低采空区及回采工作面上隅角瓦斯发挥了一定作用,提高了回采过程中瓦斯治理效率。  相似文献   

5.
为解决综采工作面上隅角瓦斯积聚超限的问题,提出了超大直径钻孔技术来治理采空区上隅角瓦斯超限问题,阐述了超大直径钻孔治理上隅角瓦斯技术原理。以曹家山矿80103工作面为工程背景,采用大直径钻孔瓦斯抽采技术对采空区上隅角瓦斯进行抽采,并利用数值模拟软件对不同抽采负压及钻孔直径下钻孔瓦斯流量进行分析,确定最佳抽采负压为-30kPa,最佳钻孔直径为130mm。确定施工参数后对大直径钻孔抽采瓦斯抽放进行工业化试验发现,当使用大直径钻孔进行上隅角瓦斯抽采时,上隅角瓦斯浓度维持在0.2%,抽放效果较佳。并对其抽采效果进行验证,为矿井地质条件相类似工作面上隅角瓦斯治理提供参考与借鉴。  相似文献   

6.
为解决青龙煤矿11615回采工作面上隅角瓦斯浓度超限难题,结合该工作面实际瓦斯赋存情况,采用高位定向长钻孔瓦斯抽采技术方法开展瓦斯抽采。对比了瓦斯抽采效果与钻孔距回风巷距离远近的关系,研究了瓦斯抽采效果与回采里程的关系,总结了高位定向长钻孔的瓦斯抽采规律。研究结果表明:回采过程中,通过高位定向长钻孔抽采采空区上覆岩层瓦斯,回采工作面上隅角瓦斯浓度降低到0.25~0.35%,解决了该采空区上隅角瓦斯浓度超限问题;钻孔距回风巷距离为40 m时,抽采瓦斯浓度基本稳定在18.5%左右,抽采效果最佳;随着回采里程的增加,钻孔抽采效果呈上升趋势,但在抽采末期有所下降;说明高位定向长钻孔对降低采空区及回采工作面上隅角瓦斯发挥了一定作用,提高了回采过程中瓦斯治理效率。  相似文献   

7.
为解决高瓦斯矿井采空区上隅角瓦斯超限问题,基于回采工作面回采过程中顶板破坏规律,结合顶板高位定向钻孔抽采采空区和上隅角瓦斯治理技术原理,提出采空区顶板高位定向钻孔差异化布置。通过数值模拟寺河矿E5302工作面顶板破坏规律,得到距回风侧煤壁90 m范围内不同位置张拉破坏高度关系式,为高位定向钻孔在回采面回风侧横向一定范围内差异化精准布置提供参考依据,确定采空区顶板高位定向钻孔布置层位为距顶板垂直距离30~45 m;现场试验期间,差异化布置顶板高位定向钻孔抽采瓦斯浓度高、流量稳定,整体抽采效果较好,有效抽采瓦斯时间达50 d以上,在抽采稳定时期钻场钻孔平均纯瓦斯抽采量达15.5 m~3/min,上隅角瓦斯体积分数控制在0.44%左右,保障了矿井回采期间安全。  相似文献   

8.
海石湾煤矿是罕见的煤与瓦斯(CO2)突出矿井,为进一步降低工作面回风流和上隅角瓦斯(CO2)浓度,设计在6224-1工作面回风巷施工顶板高位大直径定向钻孔抽采采空区瓦斯(CO2),以孔代巷,解决回采工作面采空区瓦斯(CO2)涌出问题;结合“竖三带”理论,对大直径高位定向钻孔最佳布孔范围进行了分析和确定,通过定向钻进技术使钻孔分布在煤层顶板回采断裂带(“O”型圈)内,保障工作面回采过程中的瓦斯抽采通道。顶板高位大直径定向钻孔在平面上的布置距离回风巷10~70 m(控制工作面倾斜长度1/3);高程布置距离煤层顶板16~28 m,有效降低了工作面回采时上隅角和回风流中的瓦斯(CO2)浓度。工程应用表明,大直径顶板高位定向钻孔在瓦斯(CO2)治理的效果、成本、施工效率等方面均优于传统高位普通拦截钻孔。  相似文献   

9.
采用高位定向钻孔+隅角抽采相结合的方法能有效降低上隅角瓦斯浓度;高位定向钻孔抽采流量大且相对稳定,效果好,可降低上隅角瓦斯浓度0.3%左右;上隅角埋、插管抽采对上隅角作用直接有效,可降低上隅角瓦斯浓度0.2%左右;一般高位孔抽采效果较差,对上隅角瓦斯浓度影响很小。  相似文献   

10.
为解决大采高采场多巷通风系统采空区通风的安全隐患及"U"型通风系统的瓦斯超限问题,提出了在"U"型通风系统下应用大流量穿透钻孔配合中高位裂隙带定向钻孔的采空区大流量抽采技术,优化确定了定向钻孔及穿透钻孔的布置参数。大采高开采现场应用表明:φ153mm大直径钻孔抽采流量为φ96 mm的2~3倍,中高位裂隙带钻孔瓦斯抽采浓度约为中低位钻孔的2.4倍;φ250 mm大流量穿透钻间距5 m时瓦斯抽采效果最好;采用大流量抽采技术后,上隅角瓦斯浓度维持在0.55%~0.6%,避免了瓦斯超限。  相似文献   

11.
《煤矿机械》2021,42(7):153-156
为有效解决工作面及上隅角瓦斯涌出量超量问题,采用ZYWL-6000DS型定向钻机在发耳煤矿50105工作面施工高位定向钻孔,单孔最大孔深达到600 m。基于O型圈理论并结合现场实践,确定了工作面高位钻孔的最佳布孔高度。通过监测高位定向钻孔的瓦斯抽采数据,发现其具有钻孔寿命高、瓦斯抽采浓度高等特点,单孔抽采瓦斯纯量可达1.8 m~3/min。随着工作面回采推进,上隅角瓦斯浓度降至0.2%~0.4%,表明高位钻孔具有显著的效果,能为工作面安全回采提供有力保障。  相似文献   

12.
李杰 《煤炭科学技术》2014,(12):51-53,57
为了有效治理采空区上隅角瓦斯,针对九里山矿16041工作面采用定向高位长钻孔抽采上隅角瓦斯的现状,利用UDEC软件对工作面上覆岩层塑性区进行模拟,并结合现场试验,确定了定向高位长钻孔最佳抽采位置应为距离顶板13~25 m内。抽采结果表明:工作面上隅角平均瓦斯体积分数从0.78%下降到0.31%,回采工作面推进速度从3.6 m/d提高到4.8 m/d,提高了约1.33倍,保证了工作面回采安全。  相似文献   

13.
为解决放顶煤工作面生产期间上隅角瓦斯治理难题,提出采用大直径钻孔代替联络巷的方法抽采放顶煤工作面上隅角的瓦斯。通过Fluent软件模拟腾晖煤业2-105放顶煤工作面自然情况下采空区瓦斯浓度分布规律及不同管路连接方式对采空区瓦斯浓度分布规律的影响,确定合理的抽采管路连接方式。模拟结果表明:横向大直径钻孔可代替联络巷治理高瓦斯放顶煤工作面上隅角瓦斯问题;当抽采管路采用双孔双管路的连接方式时,上隅角的瓦斯体积分数为0.25%,瓦斯抽采效果最好。现场应用结果表明:1~6组大直径钻孔抽采纯量可达到的最大值分别为1.05、1.11、1.03、1.06、1.08、1.04 m3/min,满足霍州煤电集团腾晖煤业有限责任公司对上隅角瓦斯治理的预期要求;大直径钻孔抽采过程中上隅角瓦斯浓度均在可控范围内,上隅角瓦斯体积分数为0.32%~0.74%,当钻孔距离工作面20~25 m时,处于大直径钻孔对上隅角控制的薄弱时期,上隅角的瓦斯体积分数达到的最大值为0.74%;"以孔代巷"抽采技术可有效解决高瓦斯放顶煤工作面存在的瓦斯治理难题。  相似文献   

14.
为了解决高抽巷采掘交替紧张、回采成本高、施工周期长的难题,提出了用大直径高位钻孔代替高抽巷来抽采采空区瓦斯,并对钻孔合理布置层位进行了研究,以山西某矿68310工作面为工程背景,采用FLAC3D数值模拟和现场工业试验的方法进行分析研究。结果表明:模拟得到裂隙带高度为34.2 m,垮落带高度为12.5 m,与理论计算值基本一致;通过比较不同钻孔直径的应力集中系数和卸压范围,得到钻孔的最佳直径为0.4 m,最佳布孔间距为1 m。现场实测数据显示,大直径高位钻孔作用后上隅角瓦斯体积浓度降到约0.37%,回风巷瓦斯体积浓度降到约0.28%,抽采纯量与抽采浓度和高抽巷相当,有效解决了上隅角瓦斯超限的问题,同时证实了大直径高位钻孔代替高抽巷的可行性。  相似文献   

15.
根据象山矿井5#煤层煤系地层赋存条件,分析了采空区瓦斯富集区层位,设计施工5个顶板高位定向长钻孔进行采空区瓦斯抽采治理。现场抽采结果表明:顶板高位定向长钻孔布置层位高度20~22m,水平内错距离0~45m较为合理;通过进行5#煤层顶板定向长钻孔抽采技术应用,工作面日产量大幅提升,而工作面上隅角瓦斯浓度由此前长期维持在0.7%降至0.4%左右,有效遏制了上隅角瓦斯超限事故,实现了取消高位裂隙钻孔和采空区埋管抽采的目标。  相似文献   

16.
李江平 《江西煤炭科技》2022,(1):177-179,182
针对回采工作面回风隅角瓦斯浓度高影响安全生产问题,设计采用顶板高位定向钻孔对采空区瓦斯进行抽采,通过分析23051工作面顶板三带分布及采空区瓦斯分布流场情况,合理设计顶板高位定向钻孔层位、孔径及深度,采用顶板高位定向钻孔进行采空区瓦斯抽采后,回风隅角最高瓦斯浓度由0.7%下降至0.4%,顶板高位定向钻孔抽采瓦斯量占工作...  相似文献   

17.
针对综采工作面向斜构造区瓦斯赋存和涌出异常的难题,在采面应用卸压注水钻孔抽排技术,上隅角分别采用外错低位巷大直径钻孔和内错高位巷瓦斯抽采技术进行对比,在平煤股份八矿综采工作面进行应用,结果表明:采用内错高位巷瓦斯抽采技术,上隅角处的瓦斯浓度降至0.7%~1.2%,风巷回风流瓦斯体积分数为0.18%~0.48%,平均为0.32%,下降幅度达到21.20%,有效解决了采煤工作面上隅角瓦斯浓度超限问题  相似文献   

18.
云南老厂矿区无烟煤瓦斯含量高、衰减性强、透气性系数低、瓦斯难于抽采,采用常规顺层钻孔和普通顶板高位钻孔方式难以解决上隅角瓦斯和回风流瓦斯超限问题,而采用顶板高抽巷方式面临工程量大、经济成本高、工期长等问题。通过使用定向大直径钻机施工高位定向长钻孔替代顶板高抽巷的方法,利用FLAC~(3D)数值差分软件分析煤层顶板断裂带高度。结果表明:老厂矿区8~#煤层垂向18~35 m区域为最佳抽采层位,使用高位定向长钻孔对8~#煤层顶板裂隙抽采后平均抽采瓦斯浓度(甲烷体积分数,下同)可达16%左右,平均抽采瓦斯纯流量为9.05 m~3/min,工作面上隅角瓦斯浓度控制在0.60%以下,回风流瓦斯浓度控制在0.40%以下,与采用高抽巷方法的瓦斯抽采效果相当,验证了高位定向长钻孔"以孔代巷"技术的合理性和可行性,可为云南老厂矿区无烟煤瓦斯抽采提供参考。  相似文献   

19.
姜周民 《煤炭工程》2023,(3):127-132
为了研究顶板定向长钻孔的布孔参数,以东庞矿21215工作面为工程背景,通过利用COMSOL数值模拟软件,建立了5种不同布置方式下顶板长钻孔的瓦斯抽采模型,根据模拟结果确定了“法向间距2 m、水平间距3 m”的钻孔布置方式。根据21215工作面裂隙带高度设计了钻孔的布置参数,同时利用钻孔水平位置理论确定公式验证了布孔参数的可行性。现场应用结果表明,工作面回采过程中顶板定向长钻孔抽采存在稳定阶段和衰减阶段,在衰减阶段钻孔抽采效果降低、上隅角瓦斯浓度提高,分析其原因是由于钻孔高度降低,钻孔完整性遭到破坏导致的。从整体来看,在回采期间上隅角瓦斯浓度为0.3%~0.4%,处于较低水平,说明顶板定向钻孔抽采效果较好,采用该布置方式有效解决了上隅角瓦斯浓度超限的问题。  相似文献   

20.
为了检查高位钻孔抽采技术在工作面瓦斯抽采中的效果,以山西某矿8101工作面为研究对象,采用高位钻孔抽采技术抽采工作面采空区瓦斯,结合工作面实际情况,分析了高位钻孔布置的层位、钻孔深度、钻场布置等参数,通过一段时间的抽采,取得了良好的应用效果,并对比分析8101工作面抽放管路正常工作时和因抢修管路而中断抽放后的6 h的通风瓦斯数据。结果表明当抽放系统正常运转时,抽放瓦斯浓度平均为29%,抽放率可达70.52%,上隅角的瓦斯浓度一直0.5%上下,远低于1%的安全临界值。而中断抽放后的6 h内,回风流瓦斯浓度从0.37%上升到了0.82%,上隅角瓦斯也迅速从0.52%上升至2.34%,工作面面上隅角瓦斯超限,因此,高位钻孔抽采对工作面瓦斯治理发挥着非常重要的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号