首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
海石湾煤矿是罕见的煤与瓦斯(CO2)突出矿井,为进一步降低工作面回风流和上隅角瓦斯(CO2)浓度,设计在6224-1工作面回风巷施工顶板高位大直径定向钻孔抽采采空区瓦斯(CO2),以孔代巷,解决回采工作面采空区瓦斯(CO2)涌出问题;结合“竖三带”理论,对大直径高位定向钻孔最佳布孔范围进行了分析和确定,通过定向钻进技术使钻孔分布在煤层顶板回采断裂带(“O”型圈)内,保障工作面回采过程中的瓦斯抽采通道。顶板高位大直径定向钻孔在平面上的布置距离回风巷10~70 m(控制工作面倾斜长度1/3);高程布置距离煤层顶板16~28 m,有效降低了工作面回采时上隅角和回风流中的瓦斯(CO2)浓度。工程应用表明,大直径顶板高位定向钻孔在瓦斯(CO2)治理的效果、成本、施工效率等方面均优于传统高位普通拦截钻孔。  相似文献   

2.
为进一步提高采空区裂隙带瓦斯抽采效果以保障工作面回采期间安全,提出了一种大直径顶板定向长钻孔(?203 mm)进行采动区裂隙带瓦斯定向抽采技术,并对其施工工艺、钻孔布置合理层位及抽采效果进行了研究。结果表明,钻孔布置的合理垂直高度45~50 m,钻孔与工作面回风侧的水平间距40 m。与高抽岩巷、普通顶板高位钻孔等常规采动区瓦斯治理方法相比,大直径顶板定向长钻孔的抽采量与高抽岩巷相当,是普通顶板高位孔抽采量的2.04倍;工程量大幅度降低,大直径顶板定向长钻孔既能实现高效率抽采,又达到节约工程量、降低施工成本等效果。大直径顶板定向长钻孔的成功应用为以孔代巷及传统顶板高位孔工艺的改进提供了实践基础和发展方向。  相似文献   

3.
于成凤 《钻探工程》2022,49(4):124-130
针对煤矿地层条件复杂,常规钻进工作量大、单孔深度不足、难以成孔、瓦斯抽采浓度低等诸多问题,开展了煤矿复杂地层中施工顶板大直径高位定向钻孔试验。以东保卫煤矿施工为依据,根据煤层顶板地质实际情况,在36号煤层顶板施工6个?120 mm大孔径顶板高位定向钻孔,其中孔深>300 m钻孔成孔率达到83.3%,最大孔深510 m。利用顶板大直径高位定向钻孔进行瓦斯抽采,其抽采浓度比原有工作面常规瓦斯钻孔抽采浓度增加66.7%,取得显著瓦斯抽采效果。顶板大直径高位定向钻孔的成功应用,为东保卫煤矿以及相似条件矿区推广应用提供了技术支撑。  相似文献   

4.
王磊 《现代矿业》2022,(11):248-250+254
针对王庄煤矿综放工作面瓦斯涌出量大、上隅角瓦斯积聚的情况,提出采用高位大直径定向钻孔技术治理采空区和上隅角瓦斯超限问题。通过研究采空裂隙随工作面推进的演化过程,分析顶板裂隙发育高度,确定大直径高位定向长钻孔最佳布孔层位及钻孔结构,并进行工程实践。结果表明,在高瓦斯工作面通过布设大直径高位定向长钻孔,初始时钻孔瓦斯浓度相对较高,但随工作面的不断推进,钻孔抽采瓦斯浓度开始下降,且大直径高位定向长钻孔抽采上隅角瓦斯持续时间长,抽采瓦斯纯量稳定,钻孔抽采期间平均纯量为4.3 m3/min,钻孔平均抽采浓度为11.1%,有效解决了上隅角瓦斯超限问题,保障工作面的安全回采。  相似文献   

5.
针对淮南矿区顶板岩层复杂地质条件和瓦斯赋存运移特征,开展了以孔代巷技术研究,从采动裂隙发育规律和钻孔瓦斯抽采特征等方面,分析了高位大直径定向钻孔替代高抽巷的技术原理。通过施工勘探孔探明顶板钻遇地层详细信息,以此优化高位定向钻孔层位布置、钻具组合和钻进参数。瓦斯抽采结果表明:煤层顶板以上38 m层位、距轨道巷煤壁26 m钻孔瓦斯抽采流量大、浓度高;随着高位大直径定向钻孔抽采瓦斯纯量增加,工作面上隅角瓦斯体积分数逐步降低,并稳定在0.03%左右;高位大直径定向钻孔瓦斯抽采纯量平均11.07 m~3/min,平均体积分数31.39%,与邻近高抽巷瓦斯抽采水平相当。应用结果表明,利用以孔代巷技术进行顶板瓦斯抽采是可行的,研究可为井下瓦斯高效抽采与治理提供借鉴。  相似文献   

6.
碾焉煤业综采工作面采用"U"型通风,回采过程中上隅角风流不畅,为解决上隅角瓦斯浓度超限现象频发的问题,设计在4202工作面采用高位大直径定向长钻孔抽采采空区瓦斯,通过理论分析计算初步确定定向钻孔的布置层位,数值模拟研究确定最佳的抽采负压为15 kPa,定向钻孔距离煤层底板的最佳距离20 m,在4202工作面回风绕道布置钻场进行高位大直径定向钻孔的应用,应用期间钻孔抽采瓦斯平均浓度为18%,上隅角瓦斯稳定在0.4%左右,对于上隅角瓦斯治理及抽采效果良好。  相似文献   

7.
李江平 《江西煤炭科技》2022,(1):177-179,182
针对回采工作面回风隅角瓦斯浓度高影响安全生产问题,设计采用顶板高位定向钻孔对采空区瓦斯进行抽采,通过分析23051工作面顶板三带分布及采空区瓦斯分布流场情况,合理设计顶板高位定向钻孔层位、孔径及深度,采用顶板高位定向钻孔进行采空区瓦斯抽采后,回风隅角最高瓦斯浓度由0.7%下降至0.4%,顶板高位定向钻孔抽采瓦斯量占工作...  相似文献   

8.
张志敏 《煤炭与化工》2021,44(11):107-110,113
顶板高位定向钻孔配合上隅角埋管抽放是解决综采工作面采空区瓦斯聚积、回风流瓦斯浓度高的主要手段,顶板高位定向钻孔抽放采空区聚积瓦斯期间,工作面不同通风方式对钻孔的抽放量影响差异较大.通过对常村煤矿W3309综采工作面在2种不同通风方式下的顶板高位定向钻孔抽放量进行监测,结果表明,采用两进一回前置回风比三进一回后置回风顶板高位定向钻孔抽放量高10 m3/min以上,工作面回风流瓦斯浓度下降0.23%,两进一回前置回风较三进一回后置回风更有利于顶板高位定向钻孔抽放,综采工作面瓦斯治理效果明显.同时,通过分析三进一回后置回风通风方式对抽放效果的不利影响因素,并对高位抽放钻孔进行优化,有效解决三进一回后置回风通风方式下瓦斯抽放浓度低、工作面回风流瓦斯浓度偏高问题.  相似文献   

9.
为解决高瓦斯矿井采空区上隅角瓦斯超限问题,基于回采工作面回采过程中顶板破坏规律,结合顶板高位定向钻孔抽采采空区和上隅角瓦斯治理技术原理,提出采空区顶板高位定向钻孔差异化布置。通过数值模拟寺河矿E5302工作面顶板破坏规律,得到距回风侧煤壁90 m范围内不同位置张拉破坏高度关系式,为高位定向钻孔在回采面回风侧横向一定范围内差异化精准布置提供参考依据,确定采空区顶板高位定向钻孔布置层位为距顶板垂直距离30~45 m;现场试验期间,差异化布置顶板高位定向钻孔抽采瓦斯浓度高、流量稳定,整体抽采效果较好,有效抽采瓦斯时间达50 d以上,在抽采稳定时期钻场钻孔平均纯瓦斯抽采量达15.5 m~3/min,上隅角瓦斯体积分数控制在0.44%左右,保障了矿井回采期间安全。  相似文献   

10.
云南老厂矿区无烟煤瓦斯含量高、衰减性强、透气性系数低、瓦斯难于抽采,采用常规顺层钻孔和普通顶板高位钻孔方式难以解决上隅角瓦斯和回风流瓦斯超限问题,而采用顶板高抽巷方式面临工程量大、经济成本高、工期长等问题。通过使用定向大直径钻机施工高位定向长钻孔替代顶板高抽巷的方法,利用FLAC3D数值差分软件分析煤层顶板断裂带高度。结果表明:老厂矿区8#煤层垂向18~35 m区域为最佳抽采层位,使用高位定向长钻孔对8#煤层顶板裂隙抽采后平均抽采瓦斯浓度(甲烷体积分数,下同)可达16%左右,平均抽采瓦斯纯流量为9.05 m3/min,工作面上隅角瓦斯浓度控制在0.60%以下,回风流瓦斯浓度控制在0.40%以下,与采用高抽巷方法的瓦斯抽采效果相当,验证了高位定向长钻孔“以孔代巷”技术的合理性和可行性,可为云南老厂矿区无烟煤瓦斯抽采提供参考。  相似文献   

11.
为解决青龙煤矿11615回采工作面上隅角瓦斯浓度超限难题,结合该工作面实际瓦斯赋存情况,采用高位定向长钻孔瓦斯抽采技术方法开展瓦斯抽采。对比了瓦斯抽采效果与钻孔距回风巷距离远近的关系,研究了瓦斯抽采效果与回采里程的关系,总结了高位定向长钻孔的瓦斯抽采规律。研究结果表明:回采过程中,通过高位定向长钻孔抽采采空区上覆岩层瓦斯,回采工作面上隅角瓦斯浓度降低到0.25~0.35%,解决了该采空区上隅角瓦斯浓度超限问题;钻孔距回风巷距离为40 m时,抽采瓦斯浓度基本稳定在18.5%左右,抽采效果最佳;随着回采里程的增加,钻孔抽采效果呈上升趋势,但在抽采末期有所下降;说明高位定向长钻孔对降低采空区及回采工作面上隅角瓦斯发挥了一定作用,提高了回采过程中瓦斯治理效率。  相似文献   

12.
为解决青龙煤矿11615回采工作面上隅角瓦斯浓度超限难题,结合该工作面实际瓦斯赋存情况,采用高位定向长钻孔瓦斯抽采技术方法开展瓦斯抽采。对比了瓦斯抽采效果与钻孔距回风巷距离远近的关系,研究了瓦斯抽采效果与回采里程的关系,总结了高位定向长钻孔的瓦斯抽采规律。研究结果表明:回采过程中,通过高位定向长钻孔抽采采空区上覆岩层瓦斯,回采工作面上隅角瓦斯浓度降低到0.25%~0.35%,解决了该采空区上隅角瓦斯浓度超限问题;钻孔距回风巷距离为40m时,抽采瓦斯浓度基本稳定在18.5%左右,抽采效果最佳;随着回采里程的增加,钻孔抽采效果呈上升趋势,但在抽采末期有所下降。说明高位定向长钻孔对降低采空区及回采工作面上隅角瓦斯发挥了一定作用,提高了回采过程中瓦斯治理效率。  相似文献   

13.
赵坤 《山东煤炭科技》2021,39(2):106-108
为解决福城煤矿1905S工作面上隅角瓦斯超限问题,通过分源预测法进行工作面瓦斯涌出量预测,采用高位裂隙钻孔抽采、高抽巷抽采与上隅角插管抽采相结合的方法来进行瓦斯治理。结果表明:高位钻孔最佳抽采位置为距离煤层顶板上方15~30 m,终孔位置内错工作面回风巷20~30 m;工作面上隅角瓦斯浓度日平均值降到0.3%~0.45%,工作面回风流瓦斯浓度降到0.08%~0.28%。  相似文献   

14.
为解决石泉煤业综放工作面回采期间上隅角瓦斯浓度高的问题,开展大功率定向钻机顶板走向高位钻孔抽采裂隙带瓦斯应用实践。实践表明:定向钻机施工顶板走向高位钻孔具有抽采效果持续时间较长、钻孔利用率较高的优势;通过30108综放工作面布置煤层顶板走向长钻孔,钻孔长约400 m,钻孔垂深36~48 m,各钻孔内瓦斯浓度基本控制在20%以内;抽采钻孔前后工作面上隅角瓦斯浓度分别为0.78%和0.57%,瓦斯浓度降低26.9%。试验成果为同类瓦斯治理技术提供了有意义的参考和借鉴价值。  相似文献   

15.
根据象山矿井5#煤层煤系地层赋存条件,分析了采空区瓦斯富集区层位,设计施工5个顶板高位定向长钻孔进行采空区瓦斯抽采治理。现场抽采结果表明:顶板高位定向长钻孔布置层位高度20~22m,水平内错距离0~45m较为合理;通过进行5#煤层顶板定向长钻孔抽采技术应用,工作面日产量大幅提升,而工作面上隅角瓦斯浓度由此前长期维持在0.7%降至0.4%左右,有效遏制了上隅角瓦斯超限事故,实现了取消高位裂隙钻孔和采空区埋管抽采的目标。  相似文献   

16.
为保证8301工作面高强度开采下的瓦斯有效治理,将工作面的通风系统调整为"两进一回",利用大直径L型高位定向钻孔抽放采空区瓦斯,通过计算,高位钻孔的垂直位置为煤层顶板15m,水平方向距回风巷10~50m。高位定向钻孔瓦斯抽放期间,8301工作面抽排瓦斯纯量为工作面绝对瓦斯涌出总量的36.2%,因瓦斯超限造成工作面停产现象得以控制。  相似文献   

17.
为解决上隅角瓦斯超限问题,利用定向钻进技术轨迹可控、覆盖区域广等优越性,布置顶板高位定向钻孔抽采采空区瓦斯;通过数值模拟寺河矿E5302工作面工作面顶板破坏规律,得到距回风侧75 m范围内不同位置张拉破坏高度关系式,确定采空区顶板高位定向钻孔布置层位为距顶板垂直距离30~45 m;结合现场试验,回采期间上隅角瓦斯浓度控制在0.4%左右,保障了回采期间安全。  相似文献   

18.
针对“U”型通风回采工作面采动卸压瓦斯常规治理方式存在的综合效率低、治理成本高等问题,以山西晋城矿区某煤矿生产工作面为研究对象,提出采用φ200 mm大直径高位定向钻孔进行采动卸压瓦斯治理;基于该煤矿顶板大直径高位定向钻孔成孔技术难点分析,选型了关键钻进装备,包括ZDY20000LD型定向钻机、BLY460型泥浆泵车和多动力扩孔钻具;开发了复合强排渣定向钻进技术与多动力一次扩孔技术,实现了复杂地层条件下φ120 mm高位孔定向钻进与φ200 mm一次钻扩成孔,综合成孔效率较常规多次分级扩孔方式提高50%以上。瓦斯抽采效果表明:距煤层顶板30~40 m、距回风巷道40 m区域范围是采动裂隙密集发育区,钻孔平均瓦斯抽采体积分数保持在40%以上、最大瓦斯抽采纯量10.94 m3/min,效果显著。  相似文献   

19.
深部厚煤层工作面快速回采常诱发瓦斯异常涌出。根据唐口煤矿6305工作面工程条件,采用经验公式计算了6305工作面顶板导气裂缝带的高度区间,通过Fluent模拟分析了定向长钻孔的最佳设计层位,施工了3组4个定向长钻孔,观测定向钻孔抽采瓦斯情况,并与传统的高位钻孔进行技术经济比较。结果表明:6305工作面顶板裂缝带的区间高度距离煤层底板17.4~45.5 m,定向长钻孔的最佳布置层位为距离煤层底板4倍采高(40.32 m)处;顶板定向长钻孔瓦斯抽采量为39~44 m3/min,瓦斯抽采浓度可达15%,瓦斯抽采纯量为3~5 m3/min;与高位钻场钻孔抽采相比,采用顶板定向钻孔抽采裂缝带瓦斯能够在保证不降低瓦斯治理效果的前提下,总钻孔工程量减少50%,施工时间缩短72%,每500 m回采巷道节约成本100万元。  相似文献   

20.
为解决高瓦斯突出矿井综采工作面回采期间上隅角瓦斯超限问题,基于屯兰矿12507工作面,从综采工作面瓦斯来源,采空区瓦斯赋存,高位孔布置及钻孔封孔施工等角度论述了工作面走向大孔径高位钻孔瓦斯抽采理论基础及工程应用方案。经现场工程试验,并选取工作面回采一段距离的试验数据进行分析,结果表明:孔径215 mm的走向高位孔位于煤层顶板12~30m,横向内错回风巷17 m;聚氨酯封孔18 m深情况下,平均钻孔瓦斯抽采浓度达80%以上,瓦斯抽采纯量6 m~3/min以上;工作面回采期间,上隅角瓦斯浓度在0.4%附近稳定波动,且其最大值均在1%以下。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号